Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
6d8ed0e
1
Parent(s):
35294b9
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,9 +42,9 @@ class TransformerChatbot(Model):
|
|
| 42 |
st.title("UniGLM TEXT completion Model")
|
| 43 |
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
| 44 |
#Picking what NLP task you want to do
|
| 45 |
-
option = st.selectbox('Model',('1')) #option is stored in this variable
|
| 46 |
#Textbox for text user is entering
|
| 47 |
-
st.subheader("Enter a word from which a sentence would be predicted")
|
| 48 |
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
| 49 |
|
| 50 |
if option == '1':
|
|
@@ -87,16 +87,15 @@ if option == '1':
|
|
| 87 |
other_num1 = [word_to_num[word] for word in other_words1]
|
| 88 |
given_X1 = other_num1
|
| 89 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 90 |
-
output_sentence =
|
| 91 |
for _ in range(1):
|
| 92 |
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
| 93 |
predicted_token = predicted_token.item()
|
| 94 |
out = num_to_word[predicted_token]
|
| 95 |
|
| 96 |
|
| 97 |
-
output_sentence
|
| 98 |
-
|
| 99 |
-
break
|
| 100 |
given_X1 = given_X1[1:]
|
| 101 |
given_X1.append(predicted_token)
|
| 102 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
|
@@ -105,7 +104,60 @@ if option == '1':
|
|
| 105 |
|
| 106 |
|
| 107 |
else:
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
st.write("Predicted Text: ")
|
| 111 |
st.write(out2)
|
|
|
|
| 42 |
st.title("UniGLM TEXT completion Model")
|
| 43 |
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
| 44 |
#Picking what NLP task you want to do
|
| 45 |
+
option = st.selectbox('Model',('1','2')) #option is stored in this variable
|
| 46 |
#Textbox for text user is entering
|
| 47 |
+
st.subheader("Enter a word from which a sentence / word would be predicted")
|
| 48 |
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
| 49 |
|
| 50 |
if option == '1':
|
|
|
|
| 87 |
other_num1 = [word_to_num[word] for word in other_words1]
|
| 88 |
given_X1 = other_num1
|
| 89 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 90 |
+
output_sentence = ""
|
| 91 |
for _ in range(1):
|
| 92 |
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
| 93 |
predicted_token = predicted_token.item()
|
| 94 |
out = num_to_word[predicted_token]
|
| 95 |
|
| 96 |
|
| 97 |
+
output_sentence = out
|
| 98 |
+
|
|
|
|
| 99 |
given_X1 = given_X1[1:]
|
| 100 |
given_X1.append(predicted_token)
|
| 101 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
else:
|
| 107 |
+
with open("data2.txt","r") as f:
|
| 108 |
+
text = f.read()
|
| 109 |
+
text = text.lower()
|
| 110 |
+
words = text.split()
|
| 111 |
+
loaded_dict = np.load("dict_predict3.bin.npz", allow_pickle=True)
|
| 112 |
+
word_to_num = loaded_dict["word_to_num"].item()
|
| 113 |
+
num_to_word = loaded_dict["num_to_word"].item()
|
| 114 |
+
X = []
|
| 115 |
+
Y = []
|
| 116 |
+
for i in range(len(words)-1):
|
| 117 |
+
word = words[i]
|
| 118 |
+
next_word = words[i+1]
|
| 119 |
+
X.append(word_to_num[word])
|
| 120 |
+
Y.append(word_to_num[next_word])
|
| 121 |
+
Y.append(0)
|
| 122 |
+
|
| 123 |
+
X.append(word_to_num[words[-1]])
|
| 124 |
+
X_train = pad_sequences([X])
|
| 125 |
+
y_train = pad_sequences([Y])
|
| 126 |
+
vocab_size = 100000
|
| 127 |
+
max_len = 1
|
| 128 |
+
d_model = 64 # 64 , 1024
|
| 129 |
+
n_head = 4 # 8 , 16
|
| 130 |
+
ff_dim = 256 # 256 , 2048
|
| 131 |
+
dropout_rate = 0.1 # 0.5 , 0.2
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
| 135 |
+
chatbot.load_weights("predict3")
|
| 136 |
+
chatbot.build(input_shape=(None, max_len)) # Build the model
|
| 137 |
+
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
| 138 |
+
|
| 139 |
+
for i in range(1):
|
| 140 |
+
other_text1 = text2
|
| 141 |
+
other_text1 = other_text1.lower()
|
| 142 |
+
other_words1 = other_text1.split()
|
| 143 |
+
other_num1 = [word_to_num[word] for word in other_words1]
|
| 144 |
+
given_X1 = other_num1
|
| 145 |
+
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 146 |
+
output_sentence = other_text1+""
|
| 147 |
+
for _ in range(10):
|
| 148 |
+
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
| 149 |
+
predicted_token = predicted_token.item()
|
| 150 |
+
out = num_to_word[predicted_token]
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
output_sentence += " " + out
|
| 154 |
+
if out == ".":
|
| 155 |
+
break
|
| 156 |
+
given_X1 = given_X1[1:]
|
| 157 |
+
given_X1.append(predicted_token)
|
| 158 |
+
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 159 |
+
|
| 160 |
+
out2 = output_sentence
|
| 161 |
|
| 162 |
st.write("Predicted Text: ")
|
| 163 |
st.write(out2)
|