Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
130d634
1
Parent(s):
9211632
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,8 @@ from keras.layers import Dropout, LayerNormalization
|
|
5 |
from keras.models import Model
|
6 |
from keras.utils import pad_sequences
|
7 |
import numpy as np
|
8 |
-
|
|
|
9 |
class TransformerChatbot(Model):
|
10 |
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
|
11 |
super(TransformerChatbot, self).__init__()
|
@@ -39,29 +40,8 @@ class TransformerChatbot(Model):
|
|
39 |
def create_padding_mask(self, seq):
|
40 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
41 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
|
|
42 |
|
43 |
-
st.title("UniGLM TEXT completion Model")
|
44 |
-
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
45 |
-
#Picking what NLP task you want to do
|
46 |
-
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
47 |
-
#Textbox for text user is entering
|
48 |
-
st.subheader("Enter a word from which a sentence / word would be predicted")
|
49 |
-
|
50 |
-
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
51 |
-
|
52 |
-
|
53 |
-
if option == '13M':
|
54 |
-
vocab_size = 100000
|
55 |
-
max_len = 1
|
56 |
-
d_model = 64 # 64 , 1024
|
57 |
-
n_head = 4 # 8 , 16
|
58 |
-
ff_dim = 256 # 256 , 2048
|
59 |
-
dropout_rate = 0.1 # 0.5 , 0.2
|
60 |
-
weights = "predict3"
|
61 |
-
datafile = "data2.txt"
|
62 |
-
dict = "dict_predict3.bin.npz"
|
63 |
-
len = 15
|
64 |
-
text2 = text2
|
65 |
with open(datafile,"r") as f:
|
66 |
text = f.read()
|
67 |
text = text.lower()
|
@@ -110,9 +90,43 @@ if option == '13M':
|
|
110 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
111 |
|
112 |
out2 = output_sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
elif option=="26M":
|
|
|
|
|
|
|
|
|
|
|
116 |
vocab_size = 100000
|
117 |
max_len = 1
|
118 |
d_model = 128 # 64 , 1024
|
@@ -122,57 +136,10 @@ elif option=="26M":
|
|
122 |
weights = "predict5"
|
123 |
datafile = "data2.txt"
|
124 |
dict = "dict_predict3.bin.npz"
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
text = f.read()
|
129 |
-
text = text.lower()
|
130 |
-
words = text.split()
|
131 |
-
loaded_dict = np.load(dict, allow_pickle=True)
|
132 |
-
word_to_num = loaded_dict["word_to_num"].item()
|
133 |
-
num_to_word = loaded_dict["num_to_word"].item()
|
134 |
-
X = []
|
135 |
-
Y = []
|
136 |
-
for i in range(len(words)-1):
|
137 |
-
word = words[i]
|
138 |
-
next_word = words[i+1]
|
139 |
-
X.append(word_to_num[word])
|
140 |
-
Y.append(word_to_num[next_word])
|
141 |
-
Y.append(0)
|
142 |
-
|
143 |
-
X.append(word_to_num[words[-1]])
|
144 |
-
X_train = pad_sequences([X])
|
145 |
-
y_train = pad_sequences([Y])
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
150 |
-
chatbot.load_weights(weights)
|
151 |
-
chatbot.build(input_shape=(None, max_len)) # Build the model
|
152 |
-
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
153 |
-
|
154 |
-
for i in range(1):
|
155 |
-
other_text1 = text2
|
156 |
-
other_text1 = other_text1.lower()
|
157 |
-
other_words1 = other_text1.split()
|
158 |
-
other_num1 = [word_to_num[word] for word in other_words1]
|
159 |
-
given_X1 = other_num1
|
160 |
-
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
161 |
-
output_sentence = ""
|
162 |
-
for _ in range(len):
|
163 |
-
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
164 |
-
predicted_token = predicted_token.item()
|
165 |
-
out = num_to_word[predicted_token]
|
166 |
-
|
167 |
-
|
168 |
-
output_sentence = out
|
169 |
-
|
170 |
-
given_X1 = given_X1[1:]
|
171 |
-
given_X1.append(predicted_token)
|
172 |
-
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
173 |
-
|
174 |
-
out2 = output_sentence
|
175 |
else:
|
176 |
out2 = "Error: Wrong Model Selected"
|
177 |
-
|
178 |
-
st.write(out2)
|
|
|
5 |
from keras.models import Model
|
6 |
from keras.utils import pad_sequences
|
7 |
import numpy as np
|
8 |
+
import logging
|
9 |
+
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
10 |
class TransformerChatbot(Model):
|
11 |
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
|
12 |
super(TransformerChatbot, self).__init__()
|
|
|
40 |
def create_padding_mask(self, seq):
|
41 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
42 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
43 |
+
def completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2):
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with open(datafile,"r") as f:
|
46 |
text = f.read()
|
47 |
text = text.lower()
|
|
|
90 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
91 |
|
92 |
out2 = output_sentence
|
93 |
+
return out2
|
94 |
+
st.title("UniGLM TEXT completion Model")
|
95 |
+
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
96 |
+
#Picking what NLP task you want to do
|
97 |
+
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
98 |
+
#Textbox for text user is entering
|
99 |
+
st.subheader("Enter a word from which a sentence / word would be predicted")
|
100 |
+
|
101 |
+
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
102 |
+
|
103 |
+
|
104 |
+
if option == '13M':
|
105 |
+
option2 = st.selectbox('Type',('word','sentence'))
|
106 |
+
if option2 == 'word':
|
107 |
+
len = 1
|
108 |
+
else:
|
109 |
+
len = 13
|
110 |
+
vocab_size = 100000
|
111 |
+
max_len = 1
|
112 |
+
d_model = 64 # 64 , 1024
|
113 |
+
n_head = 4 # 8 , 16
|
114 |
+
ff_dim = 256 # 256 , 2048
|
115 |
+
dropout_rate = 0.1 # 0.5 , 0.2
|
116 |
+
weights = "predict3"
|
117 |
+
datafile = "data2.txt"
|
118 |
+
dict = "dict_predict3.bin.npz"
|
119 |
+
out2 = completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2)
|
120 |
+
st.write("Predicted Text: ")
|
121 |
+
st.write(out2)
|
122 |
|
123 |
|
124 |
elif option=="26M":
|
125 |
+
option2 = st.selectbox('Type',('word','sentence'))
|
126 |
+
if option2 == 'word':
|
127 |
+
len = 1
|
128 |
+
else:
|
129 |
+
len = 13
|
130 |
vocab_size = 100000
|
131 |
max_len = 1
|
132 |
d_model = 128 # 64 , 1024
|
|
|
136 |
weights = "predict5"
|
137 |
datafile = "data2.txt"
|
138 |
dict = "dict_predict3.bin.npz"
|
139 |
+
out2 = completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2)
|
140 |
+
st.write("Predicted Text: ")
|
141 |
+
st.write(out2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
else:
|
143 |
out2 = "Error: Wrong Model Selected"
|
144 |
+
|
145 |
+
st.write(out2)
|