Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
130d634
1
Parent(s):
9211632
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,8 @@ from keras.layers import Dropout, LayerNormalization
|
|
| 5 |
from keras.models import Model
|
| 6 |
from keras.utils import pad_sequences
|
| 7 |
import numpy as np
|
| 8 |
-
|
|
|
|
| 9 |
class TransformerChatbot(Model):
|
| 10 |
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
|
| 11 |
super(TransformerChatbot, self).__init__()
|
|
@@ -39,29 +40,8 @@ class TransformerChatbot(Model):
|
|
| 39 |
def create_padding_mask(self, seq):
|
| 40 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
| 41 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
|
|
|
| 42 |
|
| 43 |
-
st.title("UniGLM TEXT completion Model")
|
| 44 |
-
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
| 45 |
-
#Picking what NLP task you want to do
|
| 46 |
-
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
| 47 |
-
#Textbox for text user is entering
|
| 48 |
-
st.subheader("Enter a word from which a sentence / word would be predicted")
|
| 49 |
-
|
| 50 |
-
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if option == '13M':
|
| 54 |
-
vocab_size = 100000
|
| 55 |
-
max_len = 1
|
| 56 |
-
d_model = 64 # 64 , 1024
|
| 57 |
-
n_head = 4 # 8 , 16
|
| 58 |
-
ff_dim = 256 # 256 , 2048
|
| 59 |
-
dropout_rate = 0.1 # 0.5 , 0.2
|
| 60 |
-
weights = "predict3"
|
| 61 |
-
datafile = "data2.txt"
|
| 62 |
-
dict = "dict_predict3.bin.npz"
|
| 63 |
-
len = 15
|
| 64 |
-
text2 = text2
|
| 65 |
with open(datafile,"r") as f:
|
| 66 |
text = f.read()
|
| 67 |
text = text.lower()
|
|
@@ -110,9 +90,43 @@ if option == '13M':
|
|
| 110 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 111 |
|
| 112 |
out2 = output_sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
elif option=="26M":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
vocab_size = 100000
|
| 117 |
max_len = 1
|
| 118 |
d_model = 128 # 64 , 1024
|
|
@@ -122,57 +136,10 @@ elif option=="26M":
|
|
| 122 |
weights = "predict5"
|
| 123 |
datafile = "data2.txt"
|
| 124 |
dict = "dict_predict3.bin.npz"
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
text = f.read()
|
| 129 |
-
text = text.lower()
|
| 130 |
-
words = text.split()
|
| 131 |
-
loaded_dict = np.load(dict, allow_pickle=True)
|
| 132 |
-
word_to_num = loaded_dict["word_to_num"].item()
|
| 133 |
-
num_to_word = loaded_dict["num_to_word"].item()
|
| 134 |
-
X = []
|
| 135 |
-
Y = []
|
| 136 |
-
for i in range(len(words)-1):
|
| 137 |
-
word = words[i]
|
| 138 |
-
next_word = words[i+1]
|
| 139 |
-
X.append(word_to_num[word])
|
| 140 |
-
Y.append(word_to_num[next_word])
|
| 141 |
-
Y.append(0)
|
| 142 |
-
|
| 143 |
-
X.append(word_to_num[words[-1]])
|
| 144 |
-
X_train = pad_sequences([X])
|
| 145 |
-
y_train = pad_sequences([Y])
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
| 150 |
-
chatbot.load_weights(weights)
|
| 151 |
-
chatbot.build(input_shape=(None, max_len)) # Build the model
|
| 152 |
-
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
| 153 |
-
|
| 154 |
-
for i in range(1):
|
| 155 |
-
other_text1 = text2
|
| 156 |
-
other_text1 = other_text1.lower()
|
| 157 |
-
other_words1 = other_text1.split()
|
| 158 |
-
other_num1 = [word_to_num[word] for word in other_words1]
|
| 159 |
-
given_X1 = other_num1
|
| 160 |
-
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 161 |
-
output_sentence = ""
|
| 162 |
-
for _ in range(len):
|
| 163 |
-
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
|
| 164 |
-
predicted_token = predicted_token.item()
|
| 165 |
-
out = num_to_word[predicted_token]
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
output_sentence = out
|
| 169 |
-
|
| 170 |
-
given_X1 = given_X1[1:]
|
| 171 |
-
given_X1.append(predicted_token)
|
| 172 |
-
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 173 |
-
|
| 174 |
-
out2 = output_sentence
|
| 175 |
else:
|
| 176 |
out2 = "Error: Wrong Model Selected"
|
| 177 |
-
|
| 178 |
-
st.write(out2)
|
|
|
|
| 5 |
from keras.models import Model
|
| 6 |
from keras.utils import pad_sequences
|
| 7 |
import numpy as np
|
| 8 |
+
import logging
|
| 9 |
+
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
| 10 |
class TransformerChatbot(Model):
|
| 11 |
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
|
| 12 |
super(TransformerChatbot, self).__init__()
|
|
|
|
| 40 |
def create_padding_mask(self, seq):
|
| 41 |
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
| 42 |
return mask[:, tf.newaxis, tf.newaxis, :]
|
| 43 |
+
def completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2):
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
with open(datafile,"r") as f:
|
| 46 |
text = f.read()
|
| 47 |
text = text.lower()
|
|
|
|
| 90 |
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
|
| 91 |
|
| 92 |
out2 = output_sentence
|
| 93 |
+
return out2
|
| 94 |
+
st.title("UniGLM TEXT completion Model")
|
| 95 |
+
st.subheader("Next Word Prediction AI Model by Webraft-AI")
|
| 96 |
+
#Picking what NLP task you want to do
|
| 97 |
+
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
|
| 98 |
+
#Textbox for text user is entering
|
| 99 |
+
st.subheader("Enter a word from which a sentence / word would be predicted")
|
| 100 |
+
|
| 101 |
+
text2 = st.text_input('Enter word: ') #text is stored in this variable
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
if option == '13M':
|
| 105 |
+
option2 = st.selectbox('Type',('word','sentence'))
|
| 106 |
+
if option2 == 'word':
|
| 107 |
+
len = 1
|
| 108 |
+
else:
|
| 109 |
+
len = 13
|
| 110 |
+
vocab_size = 100000
|
| 111 |
+
max_len = 1
|
| 112 |
+
d_model = 64 # 64 , 1024
|
| 113 |
+
n_head = 4 # 8 , 16
|
| 114 |
+
ff_dim = 256 # 256 , 2048
|
| 115 |
+
dropout_rate = 0.1 # 0.5 , 0.2
|
| 116 |
+
weights = "predict3"
|
| 117 |
+
datafile = "data2.txt"
|
| 118 |
+
dict = "dict_predict3.bin.npz"
|
| 119 |
+
out2 = completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2)
|
| 120 |
+
st.write("Predicted Text: ")
|
| 121 |
+
st.write(out2)
|
| 122 |
|
| 123 |
|
| 124 |
elif option=="26M":
|
| 125 |
+
option2 = st.selectbox('Type',('word','sentence'))
|
| 126 |
+
if option2 == 'word':
|
| 127 |
+
len = 1
|
| 128 |
+
else:
|
| 129 |
+
len = 13
|
| 130 |
vocab_size = 100000
|
| 131 |
max_len = 1
|
| 132 |
d_model = 128 # 64 , 1024
|
|
|
|
| 136 |
weights = "predict5"
|
| 137 |
datafile = "data2.txt"
|
| 138 |
dict = "dict_predict3.bin.npz"
|
| 139 |
+
out2 = completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2)
|
| 140 |
+
st.write("Predicted Text: ")
|
| 141 |
+
st.write(out2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
else:
|
| 143 |
out2 = "Error: Wrong Model Selected"
|
| 144 |
+
|
| 145 |
+
st.write(out2)
|