File size: 5,789 Bytes
5ba996d
 
 
 
 
 
009513e
5ba996d
130d634
 
5ba996d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130d634
 
 
15985e2
130d634
 
 
 
15985e2
e5c8275
 
 
 
 
 
 
 
 
 
 
130d634
 
 
 
 
 
e5c8275
 
 
 
 
 
 
15985e2
 
 
 
 
e5c8275
 
15985e2
326e3de
e5c8275
 
 
15985e2
 
 
 
 
 
 
e5c8275
 
 
 
 
 
 
9e17522
 
 
15985e2
9e17522
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c8275
 
15985e2
e5c8275
 
 
9e17522
 
 
15985e2
9e17522
 
e5c8275
9e17522
e5c8275
 
 
 
 
 
 
 
 
9e17522
 
e5c8275
 
9e17522
e5c8275
 
 
 
 
 
 
 
 
 
 
9e17522
130d634
e5c8275
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
from keras import layers
import numpy as np
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR)
class TransformerChatbot(Model):
    def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
        super(TransformerChatbot, self).__init__()
        self.embedding = Embedding(vocab_size, d_model)
        self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(dropout_rate)
        self.dense1 = Dense(ff_dim, activation="relu")
        self.dense2 = Dense(d_model)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout2 = Dropout(dropout_rate)
        self.flatten = tf.keras.layers.Flatten()
        self.fc = Dense(vocab_size, activation="softmax")
        self.max_len = max_len

    def call(self, inputs):
        x = self.embedding(inputs)
        # Masking
        mask = self.create_padding_mask(inputs)
        attn_output = self.attention(x, x, x, attention_mask=mask)
        x = x + attn_output
        x = self.norm1(x)
        x = self.dropout1(x)
        x = self.dense1(x)
        x = self.dense2(x)
        x = self.norm2(x)
        x = self.dropout2(x)
        x = self.fc(x)
        return x

    def create_padding_mask(self, seq):
        mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
        return mask[:, tf.newaxis, tf.newaxis, :]
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")
text2 = st.text_input('Enter word: ') #text is stored in this variable

if option == '13M':
    with open("data2.txt","r") as f:
        text = f.read()
    text = text.lower()
    words = text.split()
    loaded_dict = np.load("dict_predict3.bin.npz", allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = []
    X.append(word_to_num[words[-1]])
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    vocab_size = 100000
    max_len = 1
    d_model = 64  # 64 , 1024
    n_head = 4  # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights("predict3")
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    
    for i in range(1):
        other_text1 = text2
        other_text1 = other_text1.lower()
        other_words1 = other_text1.split()
        other_num1 = [word_to_num[word] for word in other_words1]
        given_X1 = other_num1
        input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        output_sentence = other_text1+""
        for _ in range(13):
            predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            
    
            output_sentence += " " + out
            if out == ".":
                break
            given_X1 = given_X1[1:]
            given_X1.append(predicted_token)
            input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')

        out2 = output_sentence
        
    
else:
    with open("data2.txt","r") as f:
        text = f.read()
    text = text.lower()
    words = text.split()
    loaded_dict = np.load("dict_predict1.bin.npz", allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = []
    Y = []
    for i in range(len(words)-1):
        word = words[i]
        next_word = words[i+1]
        X.append(word_to_num[word])
        Y.append(word_to_num[next_word])
    Y.append(0)

    X.append(word_to_num[words[-1]])
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    vocab_size = 100000
    max_len = 1
    d_model = 128  # 64 , 1024
    n_head = 4  # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights("predict1")
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    
    for i in range(1):
        other_text1 = text2
        other_text1 = other_text1.lower()
        other_words1 = other_text1.split()
        other_num1 = [word_to_num[word] for word in other_words1]
        given_X1 = other_num1
        input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        output_sentence = other_text1+""
        for _ in range(10):
            predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            
    
            output_sentence += " " + out
            if out == ".":
                break
            given_X1 = given_X1[1:]
            given_X1.append(predicted_token)
            input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')

        out2 = output_sentence





    
st.write("Predicted Text: ")
st.write(out2)