Spaces:
Paused
Paused
DHRUV SHEKHAWAT
commited on
Commit
·
9e17522
1
Parent(s):
93c51a9
Update app.py
Browse files
app.py
CHANGED
@@ -117,7 +117,55 @@ if option == '13M_OLD':
|
|
117 |
weights = "predict3"
|
118 |
datafile = "data2.txt"
|
119 |
dict = "dict_predict3.bin.npz"
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
st.write("Predicted Text: ")
|
122 |
st.write(out2)
|
123 |
|
@@ -137,7 +185,63 @@ elif option=="26M_OLD":
|
|
137 |
weights = "predict1"
|
138 |
datafile = "data2.txt"
|
139 |
dict = "dict_predict1.bin.npz"
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
st.write("Predicted Text: ")
|
142 |
st.write(out2)
|
143 |
else:
|
|
|
117 |
weights = "predict3"
|
118 |
datafile = "data2.txt"
|
119 |
dict = "dict_predict3.bin.npz"
|
120 |
+
with open(datafile,"r") as f:
|
121 |
+
text = f.read()
|
122 |
+
text = text.lower()
|
123 |
+
words = text.split()
|
124 |
+
loaded_dict = np.load(dict, allow_pickle=True)
|
125 |
+
word_to_num = loaded_dict["word_to_num"].item()
|
126 |
+
num_to_word = loaded_dict["num_to_word"].item()
|
127 |
+
X = []
|
128 |
+
Y = []
|
129 |
+
for i in range(len(words)-1):
|
130 |
+
word = words[i]
|
131 |
+
next_word = words[i+1]
|
132 |
+
X.append(word_to_num[word])
|
133 |
+
Y.append(word_to_num[next_word])
|
134 |
+
Y.append(0)
|
135 |
+
|
136 |
+
X.append(word_to_num[words[-1]])
|
137 |
+
X_train = pad_sequences([X])
|
138 |
+
y_train = pad_sequences([Y])
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
143 |
+
chatbot.load_weights(weights)
|
144 |
+
chatbot.build(input_shape=(None, max_len)) # Build the model
|
145 |
+
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
146 |
+
|
147 |
+
for i in range(1):
|
148 |
+
other_text2 = text2
|
149 |
+
other_text2 = other_text2.lower()
|
150 |
+
other_words2 = other_text2.split()
|
151 |
+
other_num2 = [word_to_num[word] for word in other_words2]
|
152 |
+
given_X2 = other_num2
|
153 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
154 |
+
output_sentence = other_text2 + ""
|
155 |
+
for _ in range(len2):
|
156 |
+
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
|
157 |
+
predicted_token = predicted_token.item()
|
158 |
+
out = num_to_word[predicted_token]
|
159 |
+
# if out == ".":
|
160 |
+
# break
|
161 |
+
|
162 |
+
output_sentence += " " + out
|
163 |
+
given_X2 = given_X2[1:]
|
164 |
+
given_X2.append(predicted_token)
|
165 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
166 |
+
|
167 |
+
out2 = output_sentence
|
168 |
+
|
169 |
st.write("Predicted Text: ")
|
170 |
st.write(out2)
|
171 |
|
|
|
185 |
weights = "predict1"
|
186 |
datafile = "data2.txt"
|
187 |
dict = "dict_predict1.bin.npz"
|
188 |
+
vocab_size = 100000
|
189 |
+
max_len = 1
|
190 |
+
d_model = 64 # 64 , 1024
|
191 |
+
n_head = 4 # 8 , 16
|
192 |
+
ff_dim = 256 # 256 , 2048
|
193 |
+
dropout_rate = 0.1 # 0.5 , 0.2
|
194 |
+
weights = "predict3"
|
195 |
+
datafile = "data2.txt"
|
196 |
+
dict = "dict_predict3.bin.npz"
|
197 |
+
with open(datafile,"r") as f:
|
198 |
+
text = f.read()
|
199 |
+
text = text.lower()
|
200 |
+
words = text.split()
|
201 |
+
loaded_dict = np.load(dict, allow_pickle=True)
|
202 |
+
word_to_num = loaded_dict["word_to_num"].item()
|
203 |
+
num_to_word = loaded_dict["num_to_word"].item()
|
204 |
+
X = []
|
205 |
+
Y = []
|
206 |
+
for i in range(len(words)-1):
|
207 |
+
word = words[i]
|
208 |
+
next_word = words[i+1]
|
209 |
+
X.append(word_to_num[word])
|
210 |
+
Y.append(word_to_num[next_word])
|
211 |
+
Y.append(0)
|
212 |
+
|
213 |
+
X.append(word_to_num[words[-1]])
|
214 |
+
X_train = pad_sequences([X])
|
215 |
+
y_train = pad_sequences([Y])
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
|
220 |
+
chatbot.load_weights(weights)
|
221 |
+
chatbot.build(input_shape=(None, max_len)) # Build the model
|
222 |
+
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
|
223 |
+
|
224 |
+
for i in range(1):
|
225 |
+
other_text2 = text2
|
226 |
+
other_text2 = other_text2.lower()
|
227 |
+
other_words2 = other_text2.split()
|
228 |
+
other_num2 = [word_to_num[word] for word in other_words2]
|
229 |
+
given_X2 = other_num2
|
230 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
231 |
+
output_sentence = other_text2 + ""
|
232 |
+
for _ in range(len2):
|
233 |
+
predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
|
234 |
+
predicted_token = predicted_token.item()
|
235 |
+
out = num_to_word[predicted_token]
|
236 |
+
# if out == ".":
|
237 |
+
# break
|
238 |
+
|
239 |
+
output_sentence += " " + out
|
240 |
+
given_X2 = given_X2[1:]
|
241 |
+
given_X2.append(predicted_token)
|
242 |
+
input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
|
243 |
+
|
244 |
+
out2 = output_sentence
|
245 |
st.write("Predicted Text: ")
|
246 |
st.write(out2)
|
247 |
else:
|