File size: 15,573 Bytes
31fd85f
 
 
 
 
 
4e6d72a
31fd85f
 
 
 
 
 
 
 
 
 
 
4e6d72a
21b2af3
 
31fd85f
4e6d72a
 
 
31fd85f
 
 
 
 
 
4e6d72a
 
 
31fd85f
 
 
 
 
 
 
 
 
 
 
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
 
 
 
 
 
4e6d72a
 
 
31fd85f
 
 
4e6d72a
 
 
31fd85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e6d72a
31fd85f
 
 
 
 
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
 
 
 
 
 
4e6d72a
 
 
 
31fd85f
4e6d72a
 
 
31fd85f
4e6d72a
 
 
31fd85f
4e6d72a
 
 
31fd85f
4e6d72a
 
 
31fd85f
4e6d72a
 
 
31fd85f
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
4e6d72a
 
 
 
 
 
31fd85f
 
 
 
 
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
4e6d72a
31fd85f
 
 
 
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
4e6d72a
31fd85f
 
 
 
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
 
4e6d72a
31fd85f
 
 
4e6d72a
31fd85f
 
4e6d72a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from flask import Flask, render_template, request, redirect, url_for, flash, send_file
import os
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load
import numpy as np
from sklearn.preprocessing import LabelEncoder
from time import time

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"

# Define the model directory and label encoder directory
MODEL_DIR = r'./Model'
LABEL_ENOCDER_DIR = r'./Label_encoders'

# Global file names for outputs; these will be updated per prediction.
PRED_OUTPUT_FILE = "data/pred_output.csv"
CLASS_OUTPUT_FILE = "data/class_output.csv"

ALLOWED_EXTENSIONS = {'csv', 'xlsx'}

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

# ------------------------------
# Load Models and Label Encoders
# ------------------------------
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))

col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))

blk_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_blk.joblib'))
wht_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_wht.joblib'))
open_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_open.joblib'))
pav_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_pav.joblib'))
blk_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_blk.joblib'))
wht_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_wht.joblib'))
open_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_open.joblib'))
pav_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_pav.joblib'))
blk_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_blk.joblib'))
wht_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_wht.joblib'))
open_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_open.joblib'))
pav_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_pav.joblib'))
blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_blk.joblib'))
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))

encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
                'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
                'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
                'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
                'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
                'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
                'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
                'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
                'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value']

loaded_label_encoder = {}
for val in encoder_list:
    encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
    loaded_label_encoder[val] = load(encoder_path)

# ------------------------------
# Utility: Allowed File Check
# ------------------------------
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# ------------------------------
# Routes
# ------------------------------
@app.route('/')
def index():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    if 'file' not in request.files:
        flash('No file part', 'error')
        return redirect(request.url)
    
    file = request.files['file']
    if file.filename == '':
        flash('No selected file', 'error')
        return redirect(request.url)
    
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)
        
        # Convert file to DataFrame
        if filename.endswith('.csv'):
            df = pd.read_csv(filepath)
        else:
            df = pd.read_excel(filepath)
        
        # Process the DataFrame and generate predictions and classification analysis.
        df_pred, dx_class = process_dataframe(df)
        
        # Save output files with a timestamp (you can also store in session if needed)
        current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
        global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
        PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}.csv'
        CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}.csv'
        df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
        dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
        
        # Redirect to report view; default to prediction report, page 1.
        return redirect(url_for('report_view', report_type='pred', page=1))
    else:
        flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
        return redirect(request.url)

def process_dataframe(df):
    try:
        # Define the columns needed for two parts
        required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut',
                            'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
        required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
        
        # Create two DataFrames: one for prediction and one for classification.
        df_pred = df[required_columns].copy()
        df_class = df[required_columns_2].fillna("NA").copy()
        
        # Transform categorical columns for prediction DataFrame using the label encoders.
        for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
            df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
        
        # Update the classification DataFrame with the transformed prediction columns.
        for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
            df_class[col] = df_pred[col]
        
        # Transform the extra columns in the classification DataFrame.
        for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
            df_class[col] = loaded_label_encoder[col].transform(df_class[col])
        
        # Convert both DataFrames to float (or handle as needed).
        df_pred = df_pred.astype(float)
        df_class = df_class.astype(float)
        
        # -------------------------
        # Prediction Report Section
        # -------------------------
        # Use the prediction DataFrame for price predictions.
        x = df_pred.copy()
        df_pred['GIA_Predicted'] = gia_model.predict(x)
        df_pred['Grade_Predicted'] = grade_model.predict(x)
        df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
        df_pred['Makable_Predicted'] = makable_model.predict(x)
        df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
        df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
        df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
        df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
        
        # -------------------------
        # Classification Report Section
        # -------------------------
        # For classification, use df_class (which has extra columns).
        x2 = df_class.copy()
        dx = df_pred.copy()  # Start with the prediction data.
        dx['col_change'] = col_model.predict(x)
        dx['cts_change'] = cts_model.predict(x)
        dx['cut_change'] = cut_model.predict(x)
        dx['qua_change'] = qua_model.predict(x)
        dx['shp_change'] = shp_model.predict(x)
        dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x2)
        dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x2)
        dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x2)
        dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x2)
        dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x2)
        dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x2)
        dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x2)
        dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x2)
        dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x2)
        dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x2)
        dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x2)
        dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x2)
        dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x2)
        dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x2)
        dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x2)
        dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x2)
        
        # Inverse transform classification predictions.
        dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
        dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
        dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
        dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
        dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
        dx['Change_Blk_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Blk_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Blk_Eng_to_Mkbl_value'])
        dx['Change_Wht_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Wht_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Wht_Eng_to_Mkbl_value'])
        dx['Change_Open_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Open_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Open_Eng_to_Mkbl_value'])
        dx['Change_Pav_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Pav_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Pav_Eng_to_Mkbl_value'])
        dx['Change_Blk_Eng_to_Grd_value'] = loaded_label_encoder['Change_Blk_Eng_to_Grd_value'].inverse_transform(dx['Change_Blk_Eng_to_Grd_value'])
        dx['Change_Wht_Eng_to_Grd_value'] = loaded_label_encoder['Change_Wht_Eng_to_Grd_value'].inverse_transform(dx['Change_Wht_Eng_to_Grd_value'])
        dx['Change_Open_Eng_to_Grd_value'] = loaded_label_encoder['Change_Open_Eng_to_Grd_value'].inverse_transform(dx['Change_Open_Eng_to_Grd_value'])
        dx['Change_Pav_Eng_to_Grd_value'] = loaded_label_encoder['Change_Pav_Eng_to_Grd_value'].inverse_transform(dx['Change_Pav_Eng_to_Grd_value'])
        dx['Change_Blk_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Blk_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Blk_Eng_to_ByGrd_value'])
        dx['Change_Wht_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Wht_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Wht_Eng_to_ByGrd_value'])
        dx['Change_Open_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Open_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Open_Eng_to_ByGrd_value'])
        dx['Change_Pav_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Pav_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Pav_Eng_to_ByGrd_value'])
        dx['Change_Blk_Eng_to_Gia_value'] = loaded_label_encoder['Change_Blk_Eng_to_Gia_value'].inverse_transform(dx['Change_Blk_Eng_to_Gia_value'])
        dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
        dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
        dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
        
        return df_pred, dx.head(len(df_pred))  # Return full DataFrames for pagination later.
    except Exception as e:
        flash(f'Error processing file: {e}', 'error')
        return pd.DataFrame(), pd.DataFrame()

# ------------------------------
# Report View Route with Pagination & Toggle
# ------------------------------
@app.route('/report')
def report_view():
    # Get query parameters: report_type (pred or class) and page number.
    report_type = request.args.get('report_type', 'pred')
    try:
        page = int(request.args.get('page', 1))
    except ValueError:
        page = 1
    per_page = 15  # records per page
    
    # Read the appropriate CSV file.
    if report_type == 'pred':
        df = pd.read_csv(PRED_OUTPUT_FILE)
    else:
        df = pd.read_csv(CLASS_OUTPUT_FILE)
    
    # Calculate pagination indices.
    start_idx = (page - 1) * per_page
    end_idx = start_idx + per_page
    total_records = len(df)
    
    # Slice the DataFrame for the current page.
    df_page = df.iloc[start_idx:end_idx]
    table_html = df_page.to_html(classes="data-table", index=False)
    
    # Determine if previous/next pages exist.
    has_prev = page > 1
    has_next = end_idx < total_records
    
    return render_template('output.html',
                           table_html=table_html,
                           report_type=report_type,
                           page=page,
                           has_prev=has_prev,
                           has_next=has_next)

# ------------------------------
# Download Routes (remain unchanged)
# ------------------------------
@app.route('/download_pred', methods=['GET'])
def download_pred():
    return send_file(PRED_OUTPUT_FILE, as_attachment=True)

@app.route('/download_class', methods=['GET'])
def download_class():
    return send_file(CLASS_OUTPUT_FILE, as_attachment=True)

if __name__ == "__main__":
    app.run(debug=True)