Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,20 +4,7 @@ import pandas as pd
|
|
4 |
from werkzeug.utils import secure_filename
|
5 |
from joblib import load
|
6 |
import numpy as np
|
7 |
-
from sklearn.preprocessing import
|
8 |
-
from sklearn.model_selection import train_test_split
|
9 |
-
from sklearn.preprocessing import StandardScaler
|
10 |
-
from sklearn.decomposition import PCA
|
11 |
-
from sklearn.pipeline import Pipeline
|
12 |
-
from sklearn.tree import DecisionTreeRegressor
|
13 |
-
from sklearn.ensemble import RandomForestRegressor
|
14 |
-
from sklearn.linear_model import LinearRegression
|
15 |
-
from xgboost import XGBRegressor
|
16 |
-
from sklearn.neighbors import KNeighborsRegressor
|
17 |
-
from sklearn.model_selection import cross_val_score
|
18 |
-
from sklearn.metrics import mean_squared_error
|
19 |
-
from sklearn import metrics
|
20 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
21 |
from time import time
|
22 |
|
23 |
app = Flask(__name__)
|
@@ -29,62 +16,75 @@ app.secret_key = os.urandom(24)
|
|
29 |
UPLOAD_FOLDER = "uploads/"
|
30 |
DATA_FOLDER = "data/"
|
31 |
|
32 |
-
# Define the model directory
|
33 |
-
MODEL_DIR = r
|
34 |
-
LABEL_ENOCDER_DIR = r'
|
35 |
|
36 |
-
#
|
37 |
-
PRED_OUTPUT_FILE = "
|
38 |
-
CLASS_OUTPUT_FILE = "
|
39 |
|
40 |
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
|
41 |
|
42 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
43 |
-
app.config['DATA_FOLDER'] = DATA_FOLDER
|
44 |
-
|
45 |
-
# Ensure the upload folder exists
|
46 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
47 |
-
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
|
48 |
-
|
49 |
-
# Load models using os.path.join for better cross-platform compatibility
|
50 |
|
51 |
-
#
|
|
|
|
|
|
|
52 |
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
|
53 |
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
|
54 |
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
|
55 |
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
|
56 |
|
57 |
-
# classifier_model
|
58 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
59 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
60 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
61 |
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
|
62 |
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
# Load label encoders
|
71 |
-
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab',
|
72 |
-
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', 'Change_cut_value']
|
73 |
-
#loaded_label_encoder = {val: load(f"./Label_encoders/label_encoder_{val}.joblib") for val in encoder_list}
|
74 |
loaded_label_encoder = {}
|
75 |
for val in encoder_list:
|
76 |
-
#encoder_path = f"H:/DEV PATEL/2025/AI_In_Diamond_Industry/Label_encoders/label_encoder_{val}.joblib"
|
77 |
encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
|
78 |
loaded_label_encoder[val] = load(encoder_path)
|
79 |
-
|
80 |
-
# print(loaded_label_encoder)
|
81 |
-
|
82 |
-
# Ensure upload folder exists
|
83 |
-
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
84 |
|
|
|
|
|
|
|
85 |
def allowed_file(filename):
|
86 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
87 |
|
|
|
|
|
|
|
88 |
@app.route('/')
|
89 |
def index():
|
90 |
return render_template('index.html')
|
@@ -105,181 +105,175 @@ def predict():
|
|
105 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
106 |
file.save(filepath)
|
107 |
|
108 |
-
# Convert to DataFrame
|
109 |
if filename.endswith('.csv'):
|
110 |
df = pd.read_csv(filepath)
|
111 |
else:
|
112 |
df = pd.read_excel(filepath)
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
else:
|
120 |
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
121 |
-
print('Invalid file type. Only CSV and Excel files are allowed.')
|
122 |
return redirect(request.url)
|
123 |
|
124 |
def process_dataframe(df):
|
125 |
try:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# for prediction
|
132 |
-
df = df[required_columns]
|
133 |
-
df = df.copy()
|
134 |
-
# for classification
|
135 |
|
|
|
|
|
|
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
df["Tag"] = loaded_label_encoder['Tag'].transform(df["Tag"])
|
141 |
-
df["EngShp"] = loaded_label_encoder['EngShp'].transform(df["EngShp"])
|
142 |
-
df["EngQua"] = loaded_label_encoder['EngQua'].transform(df["EngQua"])
|
143 |
-
df["EngCol"] = loaded_label_encoder['EngCol'].transform(df["EngCol"])
|
144 |
-
df["EngCut"] = loaded_label_encoder['EngCut'].transform(df["EngCut"])
|
145 |
-
df["EngPol"] = loaded_label_encoder['EngPol'].transform(df["EngPol"])
|
146 |
-
df["EngSym"] = loaded_label_encoder['EngSym'].transform(df["EngSym"])
|
147 |
-
df["EngFlo"] = loaded_label_encoder['EngFlo'].transform(df["EngFlo"])
|
148 |
-
df["EngNts"] = loaded_label_encoder['EngNts'].transform(df["EngNts"])
|
149 |
-
df["EngMikly"] = loaded_label_encoder['EngMikly'].transform(df["EngMikly"])
|
150 |
-
#EngLab = loaded_label_encoder['EngLab'].transform(df[EngLab])
|
151 |
-
|
152 |
-
df=df.astype(float)
|
153 |
-
print(df.head())
|
154 |
-
|
155 |
-
dx = df.copy()
|
156 |
|
157 |
-
|
158 |
-
|
|
|
159 |
|
160 |
-
#
|
161 |
-
|
|
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
#
|
166 |
-
# Prediction
|
167 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
#
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
# Compute differences
|
177 |
-
df['GIA_Diff'] = df['EngAmt'] - df['GIA_Predicted']
|
178 |
-
df['Grade_Diff'] = df['EngAmt'] - df['Grade_Predicted']
|
179 |
-
df['ByGrade_Diff'] = df['EngAmt'] - df['ByGrade_Predicted']
|
180 |
-
df['Makable_Diff'] = df['EngAmt'] - df['Makable_Predicted']
|
181 |
-
|
182 |
-
print(df.head())
|
183 |
-
|
184 |
-
predictions = df.to_dict(orient='records')
|
185 |
-
analysis = df.describe().to_html()
|
186 |
-
#print(analysis)
|
187 |
-
#print(predictions)
|
188 |
-
print("===================================process_dataframe=3==================================")
|
189 |
-
|
190 |
-
# ================================================================================================
|
191 |
-
# Classification report
|
192 |
-
# ================================================================================================
|
193 |
-
|
194 |
dx['col_change'] = col_model.predict(x)
|
195 |
dx['cts_change'] = cts_model.predict(x)
|
196 |
dx['cut_change'] = cut_model.predict(x)
|
197 |
dx['qua_change'] = qua_model.predict(x)
|
198 |
dx['shp_change'] = shp_model.predict(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
-
# Inverse transform
|
201 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
202 |
dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
|
203 |
dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
|
204 |
dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
|
205 |
-
dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
dx.to_csv(CLASS_OUTPUT_FILE, index=False)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
return df.head(), dx.head()
|
227 |
except Exception as e:
|
228 |
-
print(f'Error processing file: {e}')
|
229 |
flash(f'Error processing file: {e}', 'error')
|
230 |
return pd.DataFrame(), pd.DataFrame()
|
231 |
-
|
232 |
-
def classification_report(df):
|
233 |
-
try:
|
234 |
-
classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
|
235 |
-
"MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]]
|
236 |
-
|
237 |
-
# Make predictions
|
238 |
-
classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
)
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
)
|
259 |
-
|
260 |
-
# Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
|
261 |
-
classifcation_data['Change_cut_value'] = classifcation_data.apply(
|
262 |
-
lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
|
263 |
-
)
|
264 |
-
|
265 |
-
# Generate classification report
|
266 |
-
|
267 |
-
|
268 |
-
return classifcation_data
|
269 |
-
except Exception as e:
|
270 |
-
flash(f'Error generating classification report: {e}', 'error')
|
271 |
-
print(f'Error generating classification report: {e}')
|
272 |
-
return None
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
@app.route('/download_pred', methods=['GET'])
|
275 |
def download_pred():
|
276 |
-
|
277 |
-
return send_file(PRED_OUTPUT_FILE, as_attachment=True)
|
278 |
|
279 |
@app.route('/download_class', methods=['GET'])
|
280 |
def download_class():
|
281 |
-
|
282 |
-
return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
|
283 |
|
284 |
if __name__ == "__main__":
|
285 |
-
app.run(debug=True)
|
|
|
4 |
from werkzeug.utils import secure_filename
|
5 |
from joblib import load
|
6 |
import numpy as np
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from time import time
|
9 |
|
10 |
app = Flask(__name__)
|
|
|
16 |
UPLOAD_FOLDER = "uploads/"
|
17 |
DATA_FOLDER = "data/"
|
18 |
|
19 |
+
# Define the model directory and label encoder directory
|
20 |
+
MODEL_DIR = r'.\Model'
|
21 |
+
LABEL_ENOCDER_DIR = r'.\Label_encoders'
|
22 |
|
23 |
+
# Global file names for outputs; these will be updated per prediction.
|
24 |
+
PRED_OUTPUT_FILE = "data/pred_output.csv"
|
25 |
+
CLASS_OUTPUT_FILE = "data/class_output.csv"
|
26 |
|
27 |
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
|
28 |
|
29 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
|
|
|
|
30 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
|
|
|
|
|
|
31 |
|
32 |
+
# ------------------------------
|
33 |
+
# Load Models and Label Encoders
|
34 |
+
# ------------------------------
|
35 |
+
# (Loading models code remains unchanged)
|
36 |
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
|
37 |
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
|
38 |
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
|
39 |
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
|
40 |
|
|
|
41 |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
42 |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
43 |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
44 |
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
|
45 |
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
|
46 |
|
47 |
+
blk_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_blk.joblib'))
|
48 |
+
wht_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_wht.joblib'))
|
49 |
+
open_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_open.joblib'))
|
50 |
+
pav_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_pav.joblib'))
|
51 |
+
blk_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_blk.joblib'))
|
52 |
+
wht_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_wht.joblib'))
|
53 |
+
open_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_open.joblib'))
|
54 |
+
pav_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_pav.joblib'))
|
55 |
+
blk_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_blk.joblib'))
|
56 |
+
wht_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_wht.joblib'))
|
57 |
+
open_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_open.joblib'))
|
58 |
+
pav_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_pav.joblib'))
|
59 |
+
blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_blk.joblib'))
|
60 |
+
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
|
61 |
+
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
|
62 |
+
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
|
63 |
+
|
64 |
+
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
65 |
+
'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
66 |
+
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
|
67 |
+
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
|
68 |
+
'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
|
69 |
+
'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
|
70 |
+
'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
|
71 |
+
'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
|
72 |
+
'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value']
|
73 |
|
|
|
|
|
|
|
|
|
74 |
loaded_label_encoder = {}
|
75 |
for val in encoder_list:
|
|
|
76 |
encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
|
77 |
loaded_label_encoder[val] = load(encoder_path)
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# ------------------------------
|
80 |
+
# Utility: Allowed File Check
|
81 |
+
# ------------------------------
|
82 |
def allowed_file(filename):
|
83 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
84 |
|
85 |
+
# ------------------------------
|
86 |
+
# Routes
|
87 |
+
# ------------------------------
|
88 |
@app.route('/')
|
89 |
def index():
|
90 |
return render_template('index.html')
|
|
|
105 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
106 |
file.save(filepath)
|
107 |
|
108 |
+
# Convert file to DataFrame
|
109 |
if filename.endswith('.csv'):
|
110 |
df = pd.read_csv(filepath)
|
111 |
else:
|
112 |
df = pd.read_excel(filepath)
|
113 |
|
114 |
+
# Process the DataFrame and generate predictions and classification analysis.
|
115 |
+
df_pred, dx_class = process_dataframe(df)
|
116 |
+
|
117 |
+
# Save output files with a timestamp (you can also store in session if needed)
|
118 |
+
current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
|
119 |
+
global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
|
120 |
+
PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}.csv'
|
121 |
+
CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}.csv'
|
122 |
+
df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
|
123 |
+
dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
|
124 |
+
|
125 |
+
# Redirect to report view; default to prediction report, page 1.
|
126 |
+
return redirect(url_for('report_view', report_type='pred', page=1))
|
127 |
else:
|
128 |
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
|
|
129 |
return redirect(request.url)
|
130 |
|
131 |
def process_dataframe(df):
|
132 |
try:
|
133 |
+
# Define the columns needed for two parts
|
134 |
+
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut',
|
135 |
+
'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
136 |
+
required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Create two DataFrames: one for prediction and one for classification.
|
139 |
+
df_pred = df[required_columns].copy()
|
140 |
+
df_class = df[required_columns_2].fillna("NA").copy()
|
141 |
|
142 |
+
# Transform categorical columns for prediction DataFrame using the label encoders.
|
143 |
+
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
144 |
+
df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
# Update the classification DataFrame with the transformed prediction columns.
|
147 |
+
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
|
148 |
+
df_class[col] = df_pred[col]
|
149 |
|
150 |
+
# Transform the extra columns in the classification DataFrame.
|
151 |
+
for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|
152 |
+
df_class[col] = loaded_label_encoder[col].transform(df_class[col])
|
153 |
|
154 |
+
# Convert both DataFrames to float (or handle as needed).
|
155 |
+
df_pred = df_pred.astype(float)
|
156 |
+
df_class = df_class.astype(float)
|
157 |
|
158 |
+
# -------------------------
|
159 |
+
# Prediction Report Section
|
160 |
+
# -------------------------
|
161 |
+
# Use the prediction DataFrame for price predictions.
|
162 |
+
x = df_pred.copy()
|
163 |
+
df_pred['GIA_Predicted'] = gia_model.predict(x)
|
164 |
+
df_pred['Grade_Predicted'] = grade_model.predict(x)
|
165 |
+
df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
|
166 |
+
df_pred['Makable_Predicted'] = makable_model.predict(x)
|
167 |
+
df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
|
168 |
+
df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
|
169 |
+
df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
|
170 |
+
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
|
171 |
|
172 |
+
# -------------------------
|
173 |
+
# Classification Report Section
|
174 |
+
# -------------------------
|
175 |
+
# For classification, use df_class (which has extra columns).
|
176 |
+
x2 = df_class.copy()
|
177 |
+
dx = df_pred.copy() # Start with the prediction data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
dx['col_change'] = col_model.predict(x)
|
179 |
dx['cts_change'] = cts_model.predict(x)
|
180 |
dx['cut_change'] = cut_model.predict(x)
|
181 |
dx['qua_change'] = qua_model.predict(x)
|
182 |
dx['shp_change'] = shp_model.predict(x)
|
183 |
+
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x2)
|
184 |
+
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x2)
|
185 |
+
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x2)
|
186 |
+
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x2)
|
187 |
+
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x2)
|
188 |
+
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x2)
|
189 |
+
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x2)
|
190 |
+
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x2)
|
191 |
+
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x2)
|
192 |
+
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x2)
|
193 |
+
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x2)
|
194 |
+
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x2)
|
195 |
+
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x2)
|
196 |
+
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x2)
|
197 |
+
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x2)
|
198 |
+
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x2)
|
199 |
|
200 |
+
# Inverse transform classification predictions.
|
201 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
202 |
dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
|
203 |
dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
|
204 |
dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
|
205 |
+
dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
|
206 |
+
dx['Change_Blk_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Blk_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Blk_Eng_to_Mkbl_value'])
|
207 |
+
dx['Change_Wht_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Wht_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Wht_Eng_to_Mkbl_value'])
|
208 |
+
dx['Change_Open_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Open_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Open_Eng_to_Mkbl_value'])
|
209 |
+
dx['Change_Pav_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Pav_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Pav_Eng_to_Mkbl_value'])
|
210 |
+
dx['Change_Blk_Eng_to_Grd_value'] = loaded_label_encoder['Change_Blk_Eng_to_Grd_value'].inverse_transform(dx['Change_Blk_Eng_to_Grd_value'])
|
211 |
+
dx['Change_Wht_Eng_to_Grd_value'] = loaded_label_encoder['Change_Wht_Eng_to_Grd_value'].inverse_transform(dx['Change_Wht_Eng_to_Grd_value'])
|
212 |
+
dx['Change_Open_Eng_to_Grd_value'] = loaded_label_encoder['Change_Open_Eng_to_Grd_value'].inverse_transform(dx['Change_Open_Eng_to_Grd_value'])
|
213 |
+
dx['Change_Pav_Eng_to_Grd_value'] = loaded_label_encoder['Change_Pav_Eng_to_Grd_value'].inverse_transform(dx['Change_Pav_Eng_to_Grd_value'])
|
214 |
+
dx['Change_Blk_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Blk_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Blk_Eng_to_ByGrd_value'])
|
215 |
+
dx['Change_Wht_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Wht_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Wht_Eng_to_ByGrd_value'])
|
216 |
+
dx['Change_Open_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Open_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Open_Eng_to_ByGrd_value'])
|
217 |
+
dx['Change_Pav_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Pav_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Pav_Eng_to_ByGrd_value'])
|
218 |
+
dx['Change_Blk_Eng_to_Gia_value'] = loaded_label_encoder['Change_Blk_Eng_to_Gia_value'].inverse_transform(dx['Change_Blk_Eng_to_Gia_value'])
|
219 |
+
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
|
220 |
+
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
|
221 |
+
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
|
|
|
222 |
|
223 |
+
return df_pred, dx.head(len(df_pred)) # Return full DataFrames for pagination later.
|
|
|
|
|
224 |
except Exception as e:
|
|
|
225 |
flash(f'Error processing file: {e}', 'error')
|
226 |
return pd.DataFrame(), pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
# ------------------------------
|
229 |
+
# Report View Route with Pagination & Toggle
|
230 |
+
# ------------------------------
|
231 |
+
@app.route('/report')
|
232 |
+
def report_view():
|
233 |
+
# Get query parameters: report_type (pred or class) and page number.
|
234 |
+
report_type = request.args.get('report_type', 'pred')
|
235 |
+
try:
|
236 |
+
page = int(request.args.get('page', 1))
|
237 |
+
except ValueError:
|
238 |
+
page = 1
|
239 |
+
per_page = 15 # records per page
|
240 |
+
|
241 |
+
# Read the appropriate CSV file.
|
242 |
+
if report_type == 'pred':
|
243 |
+
df = pd.read_csv(PRED_OUTPUT_FILE)
|
244 |
+
else:
|
245 |
+
df = pd.read_csv(CLASS_OUTPUT_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
# Calculate pagination indices.
|
248 |
+
start_idx = (page - 1) * per_page
|
249 |
+
end_idx = start_idx + per_page
|
250 |
+
total_records = len(df)
|
251 |
+
|
252 |
+
# Slice the DataFrame for the current page.
|
253 |
+
df_page = df.iloc[start_idx:end_idx]
|
254 |
+
table_html = df_page.to_html(classes="data-table", index=False)
|
255 |
+
|
256 |
+
# Determine if previous/next pages exist.
|
257 |
+
has_prev = page > 1
|
258 |
+
has_next = end_idx < total_records
|
259 |
+
|
260 |
+
return render_template('output.html',
|
261 |
+
table_html=table_html,
|
262 |
+
report_type=report_type,
|
263 |
+
page=page,
|
264 |
+
has_prev=has_prev,
|
265 |
+
has_next=has_next)
|
266 |
+
|
267 |
+
# ------------------------------
|
268 |
+
# Download Routes (remain unchanged)
|
269 |
+
# ------------------------------
|
270 |
@app.route('/download_pred', methods=['GET'])
|
271 |
def download_pred():
|
272 |
+
return send_file(PRED_OUTPUT_FILE, as_attachment=True)
|
|
|
273 |
|
274 |
@app.route('/download_class', methods=['GET'])
|
275 |
def download_class():
|
276 |
+
return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
|
|
|
277 |
|
278 |
if __name__ == "__main__":
|
279 |
+
app.run(debug=True)
|