WebashalarForML commited on
Commit
31fd85f
·
verified ·
1 Parent(s): 14f07bd

Rename app2.py to app.py

Browse files
Files changed (1) hide show
  1. app2.py → app.py +283 -282
app2.py → app.py RENAMED
@@ -1,283 +1,284 @@
1
- from flask import Flask, render_template, request, redirect, url_for, flash, send_file
2
- import os
3
- import pandas as pd
4
- from werkzeug.utils import secure_filename
5
- from joblib import load
6
- import numpy as np
7
- from sklearn.preprocessing import OneHotEncoder, LabelEncoder
8
- from sklearn.model_selection import train_test_split
9
- from sklearn.preprocessing import StandardScaler
10
- from sklearn.decomposition import PCA
11
- from sklearn.pipeline import Pipeline
12
- from sklearn.tree import DecisionTreeRegressor
13
- from sklearn.ensemble import RandomForestRegressor
14
- from sklearn.linear_model import LinearRegression
15
- from xgboost import XGBRegressor
16
- from sklearn.neighbors import KNeighborsRegressor
17
- from sklearn.model_selection import cross_val_score
18
- from sklearn.metrics import mean_squared_error
19
- from sklearn import metrics
20
- from sklearn.metrics.pairwise import cosine_similarity
21
- from time import time
22
-
23
- app = Flask(__name__)
24
-
25
- # Set the secret key for session management
26
- app.secret_key = os.urandom(24)
27
-
28
- # Configurations
29
- UPLOAD_FOLDER = "uploads/"
30
- DATA_FOLDER = "data/"
31
-
32
- # Define the model directory (ensuring correct path formatting)
33
- MODEL_DIR = r'.\Model'
34
- LABEL_ENOCDER_DIR = r'.\Label_encoders'
35
-
36
- # Define the output file path
37
- PRED_OUTPUT_FILE = "data/pred_output.csv"
38
- CLASS_OUTPUT_FILE = "data/class_output.csv"
39
-
40
- ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
41
-
42
- app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
43
-
44
- # Ensure the upload folder exists
45
- os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
46
-
47
- # Load models using os.path.join for better cross-platform compatibility
48
-
49
- # linear_regression_model
50
- gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
51
- grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
52
- bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
53
- makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
54
-
55
- # classifier_model
56
- col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
57
- cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
58
- cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
59
- qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
60
- shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
61
-
62
- # print("===================================models==================================")
63
- # print(gia_model)
64
- # print(grade_model)
65
- # print(bygrade_model)
66
- # print(makable_model)
67
-
68
- # Load label encoders
69
- encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab',
70
- 'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', 'Change_cut_value']
71
- #loaded_label_encoder = {val: load(f"./Label_encoders/label_encoder_{val}.joblib") for val in encoder_list}
72
- loaded_label_encoder = {}
73
- for val in encoder_list:
74
- #encoder_path = f"H:/DEV PATEL/2025/AI_In_Diamond_Industry/Label_encoders/label_encoder_{val}.joblib"
75
- encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
76
- loaded_label_encoder[val] = load(encoder_path)
77
-
78
- # print(loaded_label_encoder)
79
-
80
- # Ensure upload folder exists
81
- os.makedirs(UPLOAD_FOLDER, exist_ok=True)
82
-
83
- def allowed_file(filename):
84
- return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
85
-
86
- @app.route('/')
87
- def index():
88
- return render_template('index.html')
89
-
90
- @app.route('/predict', methods=['POST'])
91
- def predict():
92
- if 'file' not in request.files:
93
- flash('No file part', 'error')
94
- return redirect(request.url)
95
-
96
- file = request.files['file']
97
- if file.filename == '':
98
- flash('No selected file', 'error')
99
- return redirect(request.url)
100
-
101
- if file and allowed_file(file.filename):
102
- filename = secure_filename(file.filename)
103
- filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
104
- file.save(filepath)
105
-
106
- # Convert to DataFrame
107
- if filename.endswith('.csv'):
108
- df = pd.read_csv(filepath)
109
- else:
110
- df = pd.read_excel(filepath)
111
-
112
- # Preprocess DataFrame
113
- print("===================================process_dataframe=0==================================")
114
- df,dx = process_dataframe(df)
115
- print("===================================process_dataframe=5==================================")
116
- return render_template('output.html', df=df.to_html(), dx=dx.to_html())
117
- else:
118
- flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
119
- print('Invalid file type. Only CSV and Excel files are allowed.')
120
- return redirect(request.url)
121
-
122
- def process_dataframe(df):
123
- try:
124
- print("===================================process_dataframe=1==================================")
125
- # 'EngLab' is not in the required columns
126
- required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
127
- 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
128
-
129
- # for prediction
130
- df = df[required_columns]
131
- df = df.copy()
132
- # for classification
133
-
134
-
135
- # df[col] = df[col].map(lambda x: loaded_label_encoder[col].transform([x])[0] if x in loaded_label_encoder[col].classes_ else np.nan)
136
-
137
- # Transform categorical features using loaded label encoders
138
- df["Tag"] = loaded_label_encoder['Tag'].transform(df["Tag"])
139
- df["EngShp"] = loaded_label_encoder['EngShp'].transform(df["EngShp"])
140
- df["EngQua"] = loaded_label_encoder['EngQua'].transform(df["EngQua"])
141
- df["EngCol"] = loaded_label_encoder['EngCol'].transform(df["EngCol"])
142
- df["EngCut"] = loaded_label_encoder['EngCut'].transform(df["EngCut"])
143
- df["EngPol"] = loaded_label_encoder['EngPol'].transform(df["EngPol"])
144
- df["EngSym"] = loaded_label_encoder['EngSym'].transform(df["EngSym"])
145
- df["EngFlo"] = loaded_label_encoder['EngFlo'].transform(df["EngFlo"])
146
- df["EngNts"] = loaded_label_encoder['EngNts'].transform(df["EngNts"])
147
- df["EngMikly"] = loaded_label_encoder['EngMikly'].transform(df["EngMikly"])
148
- #EngLab = loaded_label_encoder['EngLab'].transform(df[EngLab])
149
-
150
- df=df.astype(float)
151
- print(df.head())
152
-
153
- dx = df.copy()
154
-
155
- print(df.columns)
156
- x= df.copy()
157
-
158
- # print("Model expects", gia_model.n_features_in_, "features.")
159
- # print("X_features shape:", x.shape)
160
-
161
- print("===================================process_dataframe=2==================================")
162
-
163
- # ================================================================================================
164
- # Prediction report
165
- # ================================================================================================
166
-
167
- # Predict prices
168
- df['GIA_Predicted'] = gia_model.predict(x)
169
- df['Grade_Predicted'] = grade_model.predict(x)
170
- df['ByGrade_Predicted'] = bygrade_model.predict(x)
171
- df['Makable_Predicted'] = makable_model.predict(x)
172
-
173
-
174
- # Compute differences
175
- df['GIA_Diff'] = df['EngAmt'] - df['GIA_Predicted']
176
- df['Grade_Diff'] = df['EngAmt'] - df['Grade_Predicted']
177
- df['ByGrade_Diff'] = df['EngAmt'] - df['ByGrade_Predicted']
178
- df['Makable_Diff'] = df['EngAmt'] - df['Makable_Predicted']
179
-
180
- print(df.head())
181
-
182
- predictions = df.to_dict(orient='records')
183
- analysis = df.describe().to_html()
184
- #print(analysis)
185
- #print(predictions)
186
- print("===================================process_dataframe=3==================================")
187
-
188
- # ================================================================================================
189
- # Classification report
190
- # ================================================================================================
191
-
192
- dx['col_change'] = col_model.predict(x)
193
- dx['cts_change'] = cts_model.predict(x)
194
- dx['cut_change'] = cut_model.predict(x)
195
- dx['qua_change'] = qua_model.predict(x)
196
- dx['shp_change'] = shp_model.predict(x)
197
-
198
- # Inverse transform the predictions
199
- dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
200
- dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
201
- dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
202
- dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
203
- dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
204
-
205
- print(dx.head())
206
-
207
- print("===================================process_dataframe=4==================================")
208
-
209
- # Save output file with date and time
210
- time = str(pd.Timestamp.now().strftime("%Y-%m-%d"))
211
-
212
- #saving the output file
213
- global PRED_OUTPUT_FILE
214
- PRED_OUTPUT_FILE = f'data/prediction_output_{time}.csv'
215
- df.to_csv(PRED_OUTPUT_FILE, index=False)
216
-
217
- #saving the output file
218
- global CLASS_OUTPUT_FILE
219
- CLASS_OUTPUT_FILE = f'data/classification_output_{time}.csv'
220
- dx.to_csv(CLASS_OUTPUT_FILE, index=False)
221
-
222
- print("===================================Output file saved as output.csv===================================")
223
-
224
- return df.head(), dx.head()
225
- except Exception as e:
226
- print(f'Error processing file: {e}')
227
- flash(f'Error processing file: {e}', 'error')
228
- return pd.DataFrame(), pd.DataFrame()
229
-
230
- def classification_report(df):
231
- try:
232
- classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
233
- "MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]]
234
-
235
- # Make predictions
236
- classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)
237
-
238
- # Create a new column 'Change_Label' based on the values in 'Cts_diff_eng_mkbl'
239
- classifcation_data['Change_cts_value'] = classifcation_data['Cts_diff_eng_mkbl'].apply(
240
- lambda x: str(x)+' negative change' if x < 0 else (str(x)+' positive change' if x > 0 else 'no change')
241
- )
242
-
243
- # Create a new column 'Shape_Change' based on the values in 'EngShp' and 'MkblShp'
244
- classifcation_data['Change_shape_value'] = classifcation_data.apply(
245
- lambda row: str(row['EngShp'])+' to '+str(row['MkblShp'])+' shape change' if row['EngShp'] != row['MkblShp'] else 'shape not change', axis=1
246
- )
247
-
248
- # Create a new column 'quality_Change' based on the values in 'EngQua' and 'MkblQua'
249
- classifcation_data['Change_quality_value'] = classifcation_data.apply(
250
- lambda row: str(row['EngQua'])+' to '+str(row['MkblQua'])+' quality change' if row['EngQua'] != row['MkblQua'] else 'quality not change', axis=1
251
- )
252
-
253
- # Create a new column 'color_Change' based on the values in 'EngCol' and 'MkblCol'
254
- classifcation_data['Change_color_value'] = classifcation_data.apply(
255
- lambda row: str(row['EngCol'])+' to '+str(row['MkblCol'])+' color change' if row['EngCol'] != row['MkblCol'] else 'color not change', axis=1
256
- )
257
-
258
- # Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
259
- classifcation_data['Change_cut_value'] = classifcation_data.apply(
260
- lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
261
- )
262
-
263
- # Generate classification report
264
-
265
-
266
- return classifcation_data
267
- except Exception as e:
268
- flash(f'Error generating classification report: {e}', 'error')
269
- print(f'Error generating classification report: {e}')
270
- return None
271
-
272
- @app.route('/download_pred', methods=['GET'])
273
- def download_pred():
274
- """Serve the output.csv file for download."""
275
- return send_file(PRED_OUTPUT_FILE, as_attachment=True)
276
-
277
- @app.route('/download_class', methods=['GET'])
278
- def download_class():
279
- """Serve the output.csv file for download."""
280
- return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
281
-
282
- if __name__ == "__main__":
 
283
  app.run(debug=True)
 
1
+ from flask import Flask, render_template, request, redirect, url_for, flash, send_file
2
+ import os
3
+ import pandas as pd
4
+ from werkzeug.utils import secure_filename
5
+ from joblib import load
6
+ import numpy as np
7
+ from sklearn.preprocessing import OneHotEncoder, LabelEncoder
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.preprocessing import StandardScaler
10
+ from sklearn.decomposition import PCA
11
+ from sklearn.pipeline import Pipeline
12
+ from sklearn.tree import DecisionTreeRegressor
13
+ from sklearn.ensemble import RandomForestRegressor
14
+ from sklearn.linear_model import LinearRegression
15
+ from xgboost import XGBRegressor
16
+ from sklearn.neighbors import KNeighborsRegressor
17
+ from sklearn.model_selection import cross_val_score
18
+ from sklearn.metrics import mean_squared_error
19
+ from sklearn import metrics
20
+ from sklearn.metrics.pairwise import cosine_similarity
21
+ from time import time
22
+
23
+ app = Flask(__name__)
24
+
25
+ # Set the secret key for session management
26
+ app.secret_key = os.urandom(24)
27
+
28
+ # Configurations
29
+ UPLOAD_FOLDER = "uploads/"
30
+ DATA_FOLDER = "data/"
31
+
32
+ # Define the model directory (ensuring correct path formatting)
33
+ MODEL_DIR = r'.\Model'
34
+ LABEL_ENOCDER_DIR = r'.\Label_encoders'
35
+
36
+ # Define the output file path
37
+ PRED_OUTPUT_FILE = "data/pred_output.csv"
38
+ CLASS_OUTPUT_FILE = "data/class_output.csv"
39
+
40
+ ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
41
+
42
+ app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
43
+
44
+ # Ensure the upload folder exists
45
+ os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
46
+ os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
47
+
48
+ # Load models using os.path.join for better cross-platform compatibility
49
+
50
+ # linear_regression_model
51
+ gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
52
+ grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
53
+ bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
54
+ makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
55
+
56
+ # classifier_model
57
+ col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
58
+ cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
59
+ cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
60
+ qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
61
+ shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
62
+
63
+ # print("===================================models==================================")
64
+ # print(gia_model)
65
+ # print(grade_model)
66
+ # print(bygrade_model)
67
+ # print(makable_model)
68
+
69
+ # Load label encoders
70
+ encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab',
71
+ 'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', 'Change_cut_value']
72
+ #loaded_label_encoder = {val: load(f"./Label_encoders/label_encoder_{val}.joblib") for val in encoder_list}
73
+ loaded_label_encoder = {}
74
+ for val in encoder_list:
75
+ #encoder_path = f"H:/DEV PATEL/2025/AI_In_Diamond_Industry/Label_encoders/label_encoder_{val}.joblib"
76
+ encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
77
+ loaded_label_encoder[val] = load(encoder_path)
78
+
79
+ # print(loaded_label_encoder)
80
+
81
+ # Ensure upload folder exists
82
+ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
83
+
84
+ def allowed_file(filename):
85
+ return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
86
+
87
+ @app.route('/')
88
+ def index():
89
+ return render_template('index.html')
90
+
91
+ @app.route('/predict', methods=['POST'])
92
+ def predict():
93
+ if 'file' not in request.files:
94
+ flash('No file part', 'error')
95
+ return redirect(request.url)
96
+
97
+ file = request.files['file']
98
+ if file.filename == '':
99
+ flash('No selected file', 'error')
100
+ return redirect(request.url)
101
+
102
+ if file and allowed_file(file.filename):
103
+ filename = secure_filename(file.filename)
104
+ filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
105
+ file.save(filepath)
106
+
107
+ # Convert to DataFrame
108
+ if filename.endswith('.csv'):
109
+ df = pd.read_csv(filepath)
110
+ else:
111
+ df = pd.read_excel(filepath)
112
+
113
+ # Preprocess DataFrame
114
+ print("===================================process_dataframe=0==================================")
115
+ df,dx = process_dataframe(df)
116
+ print("===================================process_dataframe=5==================================")
117
+ return render_template('output.html', df=df.to_html(), dx=dx.to_html())
118
+ else:
119
+ flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
120
+ print('Invalid file type. Only CSV and Excel files are allowed.')
121
+ return redirect(request.url)
122
+
123
+ def process_dataframe(df):
124
+ try:
125
+ print("===================================process_dataframe=1==================================")
126
+ # 'EngLab' is not in the required columns
127
+ required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
128
+ 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
129
+
130
+ # for prediction
131
+ df = df[required_columns]
132
+ df = df.copy()
133
+ # for classification
134
+
135
+
136
+ # df[col] = df[col].map(lambda x: loaded_label_encoder[col].transform([x])[0] if x in loaded_label_encoder[col].classes_ else np.nan)
137
+
138
+ # Transform categorical features using loaded label encoders
139
+ df["Tag"] = loaded_label_encoder['Tag'].transform(df["Tag"])
140
+ df["EngShp"] = loaded_label_encoder['EngShp'].transform(df["EngShp"])
141
+ df["EngQua"] = loaded_label_encoder['EngQua'].transform(df["EngQua"])
142
+ df["EngCol"] = loaded_label_encoder['EngCol'].transform(df["EngCol"])
143
+ df["EngCut"] = loaded_label_encoder['EngCut'].transform(df["EngCut"])
144
+ df["EngPol"] = loaded_label_encoder['EngPol'].transform(df["EngPol"])
145
+ df["EngSym"] = loaded_label_encoder['EngSym'].transform(df["EngSym"])
146
+ df["EngFlo"] = loaded_label_encoder['EngFlo'].transform(df["EngFlo"])
147
+ df["EngNts"] = loaded_label_encoder['EngNts'].transform(df["EngNts"])
148
+ df["EngMikly"] = loaded_label_encoder['EngMikly'].transform(df["EngMikly"])
149
+ #EngLab = loaded_label_encoder['EngLab'].transform(df[EngLab])
150
+
151
+ df=df.astype(float)
152
+ print(df.head())
153
+
154
+ dx = df.copy()
155
+
156
+ print(df.columns)
157
+ x= df.copy()
158
+
159
+ # print("Model expects", gia_model.n_features_in_, "features.")
160
+ # print("X_features shape:", x.shape)
161
+
162
+ print("===================================process_dataframe=2==================================")
163
+
164
+ # ================================================================================================
165
+ # Prediction report
166
+ # ================================================================================================
167
+
168
+ # Predict prices
169
+ df['GIA_Predicted'] = gia_model.predict(x)
170
+ df['Grade_Predicted'] = grade_model.predict(x)
171
+ df['ByGrade_Predicted'] = bygrade_model.predict(x)
172
+ df['Makable_Predicted'] = makable_model.predict(x)
173
+
174
+
175
+ # Compute differences
176
+ df['GIA_Diff'] = df['EngAmt'] - df['GIA_Predicted']
177
+ df['Grade_Diff'] = df['EngAmt'] - df['Grade_Predicted']
178
+ df['ByGrade_Diff'] = df['EngAmt'] - df['ByGrade_Predicted']
179
+ df['Makable_Diff'] = df['EngAmt'] - df['Makable_Predicted']
180
+
181
+ print(df.head())
182
+
183
+ predictions = df.to_dict(orient='records')
184
+ analysis = df.describe().to_html()
185
+ #print(analysis)
186
+ #print(predictions)
187
+ print("===================================process_dataframe=3==================================")
188
+
189
+ # ================================================================================================
190
+ # Classification report
191
+ # ================================================================================================
192
+
193
+ dx['col_change'] = col_model.predict(x)
194
+ dx['cts_change'] = cts_model.predict(x)
195
+ dx['cut_change'] = cut_model.predict(x)
196
+ dx['qua_change'] = qua_model.predict(x)
197
+ dx['shp_change'] = shp_model.predict(x)
198
+
199
+ # Inverse transform the predictions
200
+ dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
201
+ dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
202
+ dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
203
+ dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
204
+ dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
205
+
206
+ print(dx.head())
207
+
208
+ print("===================================process_dataframe=4==================================")
209
+
210
+ # Save output file with date and time
211
+ time = str(pd.Timestamp.now().strftime("%Y-%m-%d"))
212
+
213
+ #saving the output file
214
+ global PRED_OUTPUT_FILE
215
+ PRED_OUTPUT_FILE = f'data/prediction_output_{time}.csv'
216
+ df.to_csv(PRED_OUTPUT_FILE, index=False)
217
+
218
+ #saving the output file
219
+ global CLASS_OUTPUT_FILE
220
+ CLASS_OUTPUT_FILE = f'data/classification_output_{time}.csv'
221
+ dx.to_csv(CLASS_OUTPUT_FILE, index=False)
222
+
223
+ print("===================================Output file saved as output.csv===================================")
224
+
225
+ return df.head(), dx.head()
226
+ except Exception as e:
227
+ print(f'Error processing file: {e}')
228
+ flash(f'Error processing file: {e}', 'error')
229
+ return pd.DataFrame(), pd.DataFrame()
230
+
231
+ def classification_report(df):
232
+ try:
233
+ classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
234
+ "MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]]
235
+
236
+ # Make predictions
237
+ classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)
238
+
239
+ # Create a new column 'Change_Label' based on the values in 'Cts_diff_eng_mkbl'
240
+ classifcation_data['Change_cts_value'] = classifcation_data['Cts_diff_eng_mkbl'].apply(
241
+ lambda x: str(x)+' negative change' if x < 0 else (str(x)+' positive change' if x > 0 else 'no change')
242
+ )
243
+
244
+ # Create a new column 'Shape_Change' based on the values in 'EngShp' and 'MkblShp'
245
+ classifcation_data['Change_shape_value'] = classifcation_data.apply(
246
+ lambda row: str(row['EngShp'])+' to '+str(row['MkblShp'])+' shape change' if row['EngShp'] != row['MkblShp'] else 'shape not change', axis=1
247
+ )
248
+
249
+ # Create a new column 'quality_Change' based on the values in 'EngQua' and 'MkblQua'
250
+ classifcation_data['Change_quality_value'] = classifcation_data.apply(
251
+ lambda row: str(row['EngQua'])+' to '+str(row['MkblQua'])+' quality change' if row['EngQua'] != row['MkblQua'] else 'quality not change', axis=1
252
+ )
253
+
254
+ # Create a new column 'color_Change' based on the values in 'EngCol' and 'MkblCol'
255
+ classifcation_data['Change_color_value'] = classifcation_data.apply(
256
+ lambda row: str(row['EngCol'])+' to '+str(row['MkblCol'])+' color change' if row['EngCol'] != row['MkblCol'] else 'color not change', axis=1
257
+ )
258
+
259
+ # Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
260
+ classifcation_data['Change_cut_value'] = classifcation_data.apply(
261
+ lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
262
+ )
263
+
264
+ # Generate classification report
265
+
266
+
267
+ return classifcation_data
268
+ except Exception as e:
269
+ flash(f'Error generating classification report: {e}', 'error')
270
+ print(f'Error generating classification report: {e}')
271
+ return None
272
+
273
+ @app.route('/download_pred', methods=['GET'])
274
+ def download_pred():
275
+ """Serve the output.csv file for download."""
276
+ return send_file(PRED_OUTPUT_FILE, as_attachment=True)
277
+
278
+ @app.route('/download_class', methods=['GET'])
279
+ def download_class():
280
+ """Serve the output.csv file for download."""
281
+ return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
282
+
283
+ if __name__ == "__main__":
284
  app.run(debug=True)