AQI_APP / README2.md
WebashalarForML's picture
Create README2.md
df265b9 verified
|
raw
history blame
2.84 kB

πŸš€ Features

  • 🌐 Interactive Map: View AQI predictions across different locations.
  • πŸ“‘ Real-Time Data: Integrates live air quality data from Weatherbit API.
  • 🧠 Deep Learning Model: Predicts AQI for the next 3 days based on PM2.5, PM10, NO2, SO2, CO, and current AQI.
  • πŸ“Š Comparative Visualization: Shows bar plots comparing model predictions and API forecasts.
  • πŸ“ CSV Logging: Stores prediction data and actual AQI values from API into CSV files.

πŸ› οΈ Setup Instructions

1. Clone the Repository

git clone https://github.com/your-username/aqi-forecast-app.git
cd aqi-forecast-app

2. Install Requirements

We recommend using a virtual environment.

pip install -r requirements.txt

3. Add Your API Key

Replace the API_KEY variable in app.py with your Weatherbit API key.

API_KEY = "your_api_key_here"

4. Add Model and Scalers

Ensure the following model and scaler files are in the project directory:

  • FUTURE_AQI_v1.json
  • FUTURE_AQI_v1.weights.h5
  • scaler_X_cpcb_4.pkl
  • scaler_y_cpcb_4.pkl

These are required to load the trained model and scale inputs/outputs.

5. Run the App

python app.py

Visit http://127.0.0.1:5000 in your browser.


πŸ“‚ File Structure

.
β”œβ”€β”€ app.py                       # Main Flask app
β”œβ”€β”€ FUTURE_AQI_v1.json          # Model architecture
β”œβ”€β”€ FUTURE_AQI_v1.weights.h5    # Trained model weights
β”œβ”€β”€ scaler_X_cpcb_4.pkl         # Scaler for input features
β”œβ”€β”€ scaler_y_cpcb_4.pkl         # Scaler for output predictions
β”œβ”€β”€ aqi_data.csv                # Stores model predictions
β”œβ”€β”€ aqi_data_actual_api.csv     # Stores actual API forecast data
└── templates/
    └── aqi_forecast_with_legend.html  # HTML template

πŸ“Š AQI Color Codes

The app uses the following colors for AQI categories:

AQI Range Color
0–50 Green
51–100 Light Green
101–150 Orange
151–200 Red
201–300 Purple
301+ Gray

πŸ“Œ Future Improvements

  • πŸ“ Add support for historical AQI trends
  • ⏳ Allow user-defined forecasting range
  • πŸ“ˆ Deploy on cloud for public access