Spaces:
Sleeping
Sleeping
Create README2.md
Browse files- README2.md +105 -0
README2.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
---
|
4 |
+
|
5 |
+
# π AQI Forecasting Web App with Map Visualization
|
6 |
+
|
7 |
+
This Flask-based web application allows users to input geographical coordinates (latitude and longitude) and receive air quality forecasts (AQI) for the next three days. It combines a deep learning model with real-time data from the Weatherbit API, and visualizes predictions on an interactive map using Folium.
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
## π Features
|
12 |
+
|
13 |
+
- π **Interactive Map**: View AQI predictions across different locations.
|
14 |
+
- π‘ **Real-Time Data**: Integrates live air quality data from Weatherbit API.
|
15 |
+
- π§ **Deep Learning Model**: Predicts AQI for the next 3 days based on PM2.5, PM10, NO2, SO2, CO, and current AQI.
|
16 |
+
- π **Comparative Visualization**: Shows bar plots comparing model predictions and API forecasts.
|
17 |
+
- π **CSV Logging**: Stores prediction data and actual AQI values from API into CSV files.
|
18 |
+
|
19 |
+
---
|
20 |
+
|
21 |
+
## π οΈ Setup Instructions
|
22 |
+
|
23 |
+
### 1. Clone the Repository
|
24 |
+
|
25 |
+
```bash
|
26 |
+
git clone https://github.com/your-username/aqi-forecast-app.git
|
27 |
+
cd aqi-forecast-app
|
28 |
+
```
|
29 |
+
|
30 |
+
### 2. Install Requirements
|
31 |
+
|
32 |
+
We recommend using a virtual environment.
|
33 |
+
|
34 |
+
```bash
|
35 |
+
pip install -r requirements.txt
|
36 |
+
```
|
37 |
+
|
38 |
+
### 3. Add Your API Key
|
39 |
+
|
40 |
+
Replace the `API_KEY` variable in `app.py` with your [Weatherbit API key](https://www.weatherbit.io/account/create).
|
41 |
+
|
42 |
+
```python
|
43 |
+
API_KEY = "your_api_key_here"
|
44 |
+
```
|
45 |
+
|
46 |
+
### 4. Add Model and Scalers
|
47 |
+
|
48 |
+
Ensure the following model and scaler files are in the project directory:
|
49 |
+
|
50 |
+
- `FUTURE_AQI_v1.json`
|
51 |
+
- `FUTURE_AQI_v1.weights.h5`
|
52 |
+
- `scaler_X_cpcb_4.pkl`
|
53 |
+
- `scaler_y_cpcb_4.pkl`
|
54 |
+
|
55 |
+
> These are required to load the trained model and scale inputs/outputs.
|
56 |
+
|
57 |
+
### 5. Run the App
|
58 |
+
|
59 |
+
```bash
|
60 |
+
python app.py
|
61 |
+
```
|
62 |
+
|
63 |
+
Visit [http://127.0.0.1:5000](http://127.0.0.1:5000) in your browser.
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
+
## π File Structure
|
68 |
+
|
69 |
+
```
|
70 |
+
.
|
71 |
+
βββ app.py # Main Flask app
|
72 |
+
βββ FUTURE_AQI_v1.json # Model architecture
|
73 |
+
βββ FUTURE_AQI_v1.weights.h5 # Trained model weights
|
74 |
+
βββ scaler_X_cpcb_4.pkl # Scaler for input features
|
75 |
+
βββ scaler_y_cpcb_4.pkl # Scaler for output predictions
|
76 |
+
βββ aqi_data.csv # Stores model predictions
|
77 |
+
βββ aqi_data_actual_api.csv # Stores actual API forecast data
|
78 |
+
βββ templates/
|
79 |
+
βββ aqi_forecast_with_legend.html # HTML template
|
80 |
+
```
|
81 |
+
|
82 |
+
---
|
83 |
+
|
84 |
+
## π AQI Color Codes
|
85 |
+
|
86 |
+
The app uses the following colors for AQI categories:
|
87 |
+
|
88 |
+
| AQI Range | Color |
|
89 |
+
|----------------|--------------|
|
90 |
+
| 0β50 | Green |
|
91 |
+
| 51β100 | Light Green |
|
92 |
+
| 101β150 | Orange |
|
93 |
+
| 151β200 | Red |
|
94 |
+
| 201β300 | Purple |
|
95 |
+
| 301+ | Gray |
|
96 |
+
|
97 |
+
---
|
98 |
+
|
99 |
+
## π Future Improvements
|
100 |
+
|
101 |
+
- π Add support for historical AQI trends
|
102 |
+
- β³ Allow user-defined forecasting range
|
103 |
+
- π Deploy on cloud for public access
|
104 |
+
|
105 |
+
---
|