Spaces:
Sleeping
Sleeping
File size: 7,853 Bytes
dc11300 6d243a6 dc11300 f114b1f dc11300 27083da dc11300 27083da dc11300 27083da dc11300 6d243a6 27083da f114b1f 7f2bee8 f114b1f 27083da 6d243a6 dc11300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import streamlit as st
import pandas as pd
import numpy as np
import datetime as dt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from gensim.models import Word2Vec
# Set the page configuration
st.set_page_config(page_title="Customer Segmentation and Product Recommendation", layout="wide")
# Title and Description
st.title("πCustomer Segmentation & Product Recommendation App")
st.markdown("""
This application performs **Customer Segmentation** using RFM analysis and clustering,
and provides **Product Recommendations** based on purchase patterns.
Upload your dataset, analyze customer behavior, and visualize results interactively.
""")
# Sidebar for uploading data
st.sidebar.header("Upload Dataset")
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type=["csv"])
if uploaded_file:
# Load data
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1", dtype={'CustomerID': str, 'InvoiceID': str})
st.sidebar.success("Dataset uploaded successfully!")
else:
st.sidebar.warning("Please upload a CSV file to start!")
st.stop()
# Data Cleaning and Preprocessing
st.header("π§Ή Data Cleaning and Preprocessing")
# Create 'Amount' column
df["Amount"] = df["Quantity"] * df["UnitPrice"]
st.markdown("### Initial Data Preview")
st.write(df.head())
# Filter UK customers
df = df[df["Country"] == "United Kingdom"]
df = df[df["Quantity"] > 0]
df.dropna(subset=['CustomerID'], inplace=True)
df["InvoiceDate"] = pd.to_datetime(df["InvoiceDate"])
df["date"] = df["InvoiceDate"].dt.date
# Cleaned data preview
st.markdown("### Cleaned Data Overview")
st.write(df.describe())
# Summary Statistics
st.subheader("π Summary Statistics")
metrics = {
"Number of Invoices": df['InvoiceNo'].nunique(),
"Number of Products Bought": df['StockCode'].nunique(),
"Number of Customers": df['CustomerID'].nunique(),
"Average Quantity per Customer": round(df.groupby("CustomerID").Quantity.sum().mean(), 0),
"Average Revenue per Customer (Β£)": round(df.groupby("CustomerID").Amount.sum().mean(), 2),
}
st.write(pd.DataFrame(metrics.items(), columns=["Metric", "Value"]))
# Monthly Transactions Analysis
st.subheader("π
Monthly Transactions Analysis")
df['month'] = df['InvoiceDate'].dt.month
monthly_counts = df.groupby('month').size()
# Plot using Plotly
fig_monthly = px.bar(
monthly_counts,
x=monthly_counts.index,
y=monthly_counts.values,
labels={"x": "Month", "y": "Transactions"},
title="Transactions Per Month"
)
st.plotly_chart(fig_monthly)
# RFM Analysis
st.header("π RFM Analysis")
# Recency Calculation
now = pd.Timestamp("2011-12-09")
recency_df = df.groupby("CustomerID")["date"].max().reset_index()
recency_df["Recency"] = (now - pd.to_datetime(recency_df["date"])).dt.days
# Frequency Calculation
frequency_df = df.groupby("CustomerID")["InvoiceNo"].nunique().reset_index()
frequency_df.rename(columns={"InvoiceNo": "Frequency"}, inplace=True)
# Monetary Calculation
monetary_df = df.groupby("CustomerID")["Amount"].sum().reset_index()
monetary_df.rename(columns={"Amount": "Monetary"}, inplace=True)
# Combine RFM
rfm = recency_df.merge(frequency_df, on="CustomerID").merge(monetary_df, on="CustomerID")
st.write("### RFM Data")
st.write(rfm.head())
# Visualize RFM Distributions
fig_rfm = px.scatter_3d(
rfm,
x="Recency",
y="Frequency",
z="Monetary",
color="Monetary",
size="Monetary",
title="RFM Scatter Plot"
)
st.plotly_chart(fig_rfm)
# K-Means Clustering
st.header("π K-Means Clustering")
st.sidebar.subheader("Clustering Parameters")
num_clusters = st.sidebar.slider("Number of Clusters", 2, 10, value=4)
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
rfm["Cluster"] = kmeans.fit_predict(rfm[["Recency", "Frequency", "Monetary"]])
# Cluster Visualization
fig_cluster = px.scatter_3d(
rfm,
x="Recency",
y="Frequency",
z="Monetary",
color="Cluster",
title=f"Customer Segmentation with {num_clusters} Clusters",
symbol="Cluster",
size="Monetary",
)
st.plotly_chart(fig_cluster)
#Enhanced RFM Analysis
st.header("π Enhanced RFM Analysis")
# Interactive RFM Heatmap
heatmap_data = rfm[["Recency", "Frequency", "Monetary", "Cluster"]].groupby("Cluster").mean()
fig, ax = plt.subplots(figsize=(10, 6))
sns.heatmap(heatmap_data, annot=True, fmt=".1f", cmap="coolwarm", cbar=True, ax=ax)
ax.set_title("Average RFM Values per Cluster", fontsize=16)
st.pyplot(fig)
# Animated RFM Scatter
st.subheader("π Animated RFM Scatter Plot")
fig_rfm_animated = px.scatter_3d(
rfm,
x="Recency",
y="Frequency",
z="Monetary",
color="Cluster",
animation_frame="Cluster", # Add animation based on clusters
title="RFM Clusters Over Time",
size="Monetary",
)
st.plotly_chart(fig_rfm_animated)
# Product Recommendation
st.header("π― Product Recommendations")
# Train Word2Vec Model
st.subheader("π Train Word2Vec Model")
with st.spinner("Training Word2Vec model..."):
invoices = df.groupby("InvoiceNo")["Description"].apply(list) # Group products by invoices
model = Word2Vec(sentences=invoices, vector_size=50, window=5, min_count=1, workers=4, sg=1)
st.success("Word2Vec model trained successfully!")
# Display similar products
st.subheader("π Find Similar Products")
selected_product = st.selectbox("Select a product to find recommendations:", df["Description"].unique())
if st.button("Recommend Products for Customers"):
try:
similar_products = model.wv.most_similar(selected_product, topn=5) # Top 5 recommendations
st.write("### Recommended Products")
for product, similarity in similar_products:
st.write(f"- **{product}** (Similarity: {similarity:.2f})")
except KeyError:
st.warning("The selected product is not in the vocabulary. Please choose another.")
# Recommendations for Cluster-Based Segmentation
st.subheader("π Recommendations by Cluster")
cluster_to_recommend = st.selectbox("Select a cluster:", rfm["Cluster"].unique())
if st.button("Recommend for Cluster"):
cluster_customers = rfm[rfm["Cluster"] == cluster_to_recommend]["CustomerID"]
cluster_df = df[df["CustomerID"].isin(cluster_customers)]
cluster_invoices = cluster_df.groupby("InvoiceNo")["Description"].apply(list)
with st.spinner("Training cluster-specific Word2Vec model..."):
cluster_model = Word2Vec(sentences=cluster_invoices, vector_size=50, window=5, min_count=1, workers=4, sg=1)
try:
cluster_similar_products = cluster_model.wv.most_similar(selected_product, topn=5)
st.write(f"### Recommended Products for Cluster {cluster_to_recommend}")
for product, similarity in cluster_similar_products:
st.write(f"- **{product}** (Similarity: {similarity:.2f})")
except KeyError:
st.warning("The selected product is not in the vocabulary for this cluster.")
# PCA to visualize Word2Vec embeddings
st.subheader("π Word2Vec Embedding Visualization")
vectors = model.wv[model.wv.key_to_index.keys()] # Product vectors
pca = PCA(n_components=2)
pca_result = pca.fit_transform(vectors)
# Create DataFrame for visualization
embedding_df = pd.DataFrame(pca_result, columns=["PCA1", "PCA2"])
embedding_df["Product"] = model.wv.key_to_index.keys()
# Interactive Plot
fig_embed = px.scatter(
embedding_df,
x="PCA1",
y="PCA2",
hover_data=["Product"],
title="Word2Vec Product Embeddings",
template="plotly_dark",
)
st.plotly_chart(fig_embed)
# Export Data
st.header("π€ Export Processed Data")
if st.button("Export RFM Data"):
rfm.to_csv("rfm_data.csv", index=False)
st.success("RFM data exported as `rfm_data.csv`!")
st.markdown("### Enjoy exploring your customer data! π")
|