Spaces:
Build error
Build error
Viraj2307
commited on
Commit
Β·
dc11300
1
Parent(s):
8c08a5a
Added app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import datetime as dt
|
| 5 |
+
from sklearn.cluster import KMeans
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
|
| 10 |
+
# Set the page configuration
|
| 11 |
+
st.set_page_config(page_title="Customer Segmentation", layout="wide")
|
| 12 |
+
|
| 13 |
+
# Title and Description
|
| 14 |
+
st.title("π Advanced Customer Segmentation App")
|
| 15 |
+
st.markdown("""
|
| 16 |
+
This application allows you to perform **Customer Segmentation** using RFM analysis and clustering.
|
| 17 |
+
Upload your dataset, analyze the metrics, and visualize customer behaviors interactively.
|
| 18 |
+
""")
|
| 19 |
+
|
| 20 |
+
# Sidebar for uploading data
|
| 21 |
+
st.sidebar.header("Upload Dataset")
|
| 22 |
+
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type=["csv"])
|
| 23 |
+
|
| 24 |
+
if uploaded_file:
|
| 25 |
+
# Load data
|
| 26 |
+
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1", dtype={'CustomerID': str, 'InvoiceID': str})
|
| 27 |
+
st.sidebar.success("Dataset uploaded successfully!")
|
| 28 |
+
else:
|
| 29 |
+
st.sidebar.warning("Please upload a CSV file to start!")
|
| 30 |
+
st.stop()
|
| 31 |
+
|
| 32 |
+
# Data Cleaning and Preprocessing
|
| 33 |
+
st.header("π§Ή Data Cleaning and Preprocessing")
|
| 34 |
+
|
| 35 |
+
# Create 'Amount' column
|
| 36 |
+
df["Amount"] = df["Quantity"] * df["UnitPrice"]
|
| 37 |
+
st.markdown("### Initial Data Preview")
|
| 38 |
+
st.write(df.head())
|
| 39 |
+
|
| 40 |
+
# Filter UK customers
|
| 41 |
+
df = df[df["Country"] == "United Kingdom"]
|
| 42 |
+
df = df[df["Quantity"] > 0]
|
| 43 |
+
df.dropna(subset=['CustomerID'], inplace=True)
|
| 44 |
+
df["InvoiceDate"] = pd.to_datetime(df["InvoiceDate"])
|
| 45 |
+
df["date"] = df["InvoiceDate"].dt.date
|
| 46 |
+
|
| 47 |
+
# Cleaned data preview
|
| 48 |
+
st.markdown("### Cleaned Data Overview")
|
| 49 |
+
st.write(df.describe())
|
| 50 |
+
|
| 51 |
+
# Summary Statistics
|
| 52 |
+
st.subheader("π Summary Statistics")
|
| 53 |
+
metrics = {
|
| 54 |
+
"Number of Invoices": df['InvoiceNo'].nunique(),
|
| 55 |
+
"Number of Products Bought": df['StockCode'].nunique(),
|
| 56 |
+
"Number of Customers": df['CustomerID'].nunique(),
|
| 57 |
+
"Average Quantity per Customer": round(df.groupby("CustomerID").Quantity.sum().mean(), 0),
|
| 58 |
+
"Average Revenue per Customer (Β£)": round(df.groupby("CustomerID").Amount.sum().mean(), 2),
|
| 59 |
+
}
|
| 60 |
+
st.write(pd.DataFrame(metrics.items(), columns=["Metric", "Value"]))
|
| 61 |
+
|
| 62 |
+
# Monthly Transactions Analysis
|
| 63 |
+
st.subheader("π
Monthly Transactions Analysis")
|
| 64 |
+
df['month'] = df['InvoiceDate'].dt.month
|
| 65 |
+
monthly_counts = df.groupby('month').size()
|
| 66 |
+
|
| 67 |
+
# Plot using Plotly
|
| 68 |
+
fig_monthly = px.bar(
|
| 69 |
+
monthly_counts,
|
| 70 |
+
x=monthly_counts.index,
|
| 71 |
+
y=monthly_counts.values,
|
| 72 |
+
labels={"x": "Month", "y": "Transactions"},
|
| 73 |
+
title="Transactions Per Month"
|
| 74 |
+
)
|
| 75 |
+
st.plotly_chart(fig_monthly)
|
| 76 |
+
|
| 77 |
+
# RFM Analysis
|
| 78 |
+
st.header("π RFM Analysis")
|
| 79 |
+
|
| 80 |
+
# Recency Calculation
|
| 81 |
+
now = pd.Timestamp("2011-12-09")
|
| 82 |
+
recency_df = df.groupby("CustomerID")["date"].max().reset_index()
|
| 83 |
+
recency_df["Recency"] = (now - pd.to_datetime(recency_df["date"])).dt.days
|
| 84 |
+
|
| 85 |
+
# Frequency Calculation
|
| 86 |
+
frequency_df = df.groupby("CustomerID")["InvoiceNo"].nunique().reset_index()
|
| 87 |
+
frequency_df.rename(columns={"InvoiceNo": "Frequency"}, inplace=True)
|
| 88 |
+
|
| 89 |
+
# Monetary Calculation
|
| 90 |
+
monetary_df = df.groupby("CustomerID")["Amount"].sum().reset_index()
|
| 91 |
+
monetary_df.rename(columns={"Amount": "Monetary"}, inplace=True)
|
| 92 |
+
|
| 93 |
+
# Combine RFM
|
| 94 |
+
rfm = recency_df.merge(frequency_df, on="CustomerID").merge(monetary_df, on="CustomerID")
|
| 95 |
+
st.write("### RFM Data")
|
| 96 |
+
st.write(rfm.head())
|
| 97 |
+
|
| 98 |
+
# Visualize RFM Distributions
|
| 99 |
+
fig_rfm = px.scatter_3d(
|
| 100 |
+
rfm,
|
| 101 |
+
x="Recency",
|
| 102 |
+
y="Frequency",
|
| 103 |
+
z="Monetary",
|
| 104 |
+
color="Monetary",
|
| 105 |
+
size="Monetary",
|
| 106 |
+
title="RFM Scatter Plot"
|
| 107 |
+
)
|
| 108 |
+
st.plotly_chart(fig_rfm)
|
| 109 |
+
|
| 110 |
+
# K-Means Clustering
|
| 111 |
+
st.header("π K-Means Clustering")
|
| 112 |
+
st.sidebar.subheader("Clustering Parameters")
|
| 113 |
+
num_clusters = st.sidebar.slider("Number of Clusters", 2, 10, value=4)
|
| 114 |
+
|
| 115 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
| 116 |
+
rfm["Cluster"] = kmeans.fit_predict(rfm[["Recency", "Frequency", "Monetary"]])
|
| 117 |
+
|
| 118 |
+
# Cluster Visualization
|
| 119 |
+
fig_cluster = px.scatter_3d(
|
| 120 |
+
rfm,
|
| 121 |
+
x="Recency",
|
| 122 |
+
y="Frequency",
|
| 123 |
+
z="Monetary",
|
| 124 |
+
color="Cluster",
|
| 125 |
+
title=f"Customer Segmentation with {num_clusters} Clusters",
|
| 126 |
+
symbol="Cluster",
|
| 127 |
+
size="Monetary",
|
| 128 |
+
)
|
| 129 |
+
st.plotly_chart(fig_cluster)
|
| 130 |
+
|
| 131 |
+
# Export Data
|
| 132 |
+
st.header("π€ Export Processed Data")
|
| 133 |
+
if st.button("Export RFM Data"):
|
| 134 |
+
rfm.to_csv("rfm_data.csv", index=False)
|
| 135 |
+
st.success("RFM data exported as `rfm_data.csv`!")
|
| 136 |
+
|
| 137 |
+
st.markdown("### Enjoy exploring your customer data! π")
|