Spaces:
Sleeping
Sleeping
Viraj2307
commited on
Commit
Β·
dc11300
1
Parent(s):
8c08a5a
Added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import datetime as dt
|
5 |
+
from sklearn.cluster import KMeans
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import plotly.express as px
|
9 |
+
|
10 |
+
# Set the page configuration
|
11 |
+
st.set_page_config(page_title="Customer Segmentation", layout="wide")
|
12 |
+
|
13 |
+
# Title and Description
|
14 |
+
st.title("π Advanced Customer Segmentation App")
|
15 |
+
st.markdown("""
|
16 |
+
This application allows you to perform **Customer Segmentation** using RFM analysis and clustering.
|
17 |
+
Upload your dataset, analyze the metrics, and visualize customer behaviors interactively.
|
18 |
+
""")
|
19 |
+
|
20 |
+
# Sidebar for uploading data
|
21 |
+
st.sidebar.header("Upload Dataset")
|
22 |
+
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type=["csv"])
|
23 |
+
|
24 |
+
if uploaded_file:
|
25 |
+
# Load data
|
26 |
+
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1", dtype={'CustomerID': str, 'InvoiceID': str})
|
27 |
+
st.sidebar.success("Dataset uploaded successfully!")
|
28 |
+
else:
|
29 |
+
st.sidebar.warning("Please upload a CSV file to start!")
|
30 |
+
st.stop()
|
31 |
+
|
32 |
+
# Data Cleaning and Preprocessing
|
33 |
+
st.header("π§Ή Data Cleaning and Preprocessing")
|
34 |
+
|
35 |
+
# Create 'Amount' column
|
36 |
+
df["Amount"] = df["Quantity"] * df["UnitPrice"]
|
37 |
+
st.markdown("### Initial Data Preview")
|
38 |
+
st.write(df.head())
|
39 |
+
|
40 |
+
# Filter UK customers
|
41 |
+
df = df[df["Country"] == "United Kingdom"]
|
42 |
+
df = df[df["Quantity"] > 0]
|
43 |
+
df.dropna(subset=['CustomerID'], inplace=True)
|
44 |
+
df["InvoiceDate"] = pd.to_datetime(df["InvoiceDate"])
|
45 |
+
df["date"] = df["InvoiceDate"].dt.date
|
46 |
+
|
47 |
+
# Cleaned data preview
|
48 |
+
st.markdown("### Cleaned Data Overview")
|
49 |
+
st.write(df.describe())
|
50 |
+
|
51 |
+
# Summary Statistics
|
52 |
+
st.subheader("π Summary Statistics")
|
53 |
+
metrics = {
|
54 |
+
"Number of Invoices": df['InvoiceNo'].nunique(),
|
55 |
+
"Number of Products Bought": df['StockCode'].nunique(),
|
56 |
+
"Number of Customers": df['CustomerID'].nunique(),
|
57 |
+
"Average Quantity per Customer": round(df.groupby("CustomerID").Quantity.sum().mean(), 0),
|
58 |
+
"Average Revenue per Customer (Β£)": round(df.groupby("CustomerID").Amount.sum().mean(), 2),
|
59 |
+
}
|
60 |
+
st.write(pd.DataFrame(metrics.items(), columns=["Metric", "Value"]))
|
61 |
+
|
62 |
+
# Monthly Transactions Analysis
|
63 |
+
st.subheader("π
Monthly Transactions Analysis")
|
64 |
+
df['month'] = df['InvoiceDate'].dt.month
|
65 |
+
monthly_counts = df.groupby('month').size()
|
66 |
+
|
67 |
+
# Plot using Plotly
|
68 |
+
fig_monthly = px.bar(
|
69 |
+
monthly_counts,
|
70 |
+
x=monthly_counts.index,
|
71 |
+
y=monthly_counts.values,
|
72 |
+
labels={"x": "Month", "y": "Transactions"},
|
73 |
+
title="Transactions Per Month"
|
74 |
+
)
|
75 |
+
st.plotly_chart(fig_monthly)
|
76 |
+
|
77 |
+
# RFM Analysis
|
78 |
+
st.header("π RFM Analysis")
|
79 |
+
|
80 |
+
# Recency Calculation
|
81 |
+
now = pd.Timestamp("2011-12-09")
|
82 |
+
recency_df = df.groupby("CustomerID")["date"].max().reset_index()
|
83 |
+
recency_df["Recency"] = (now - pd.to_datetime(recency_df["date"])).dt.days
|
84 |
+
|
85 |
+
# Frequency Calculation
|
86 |
+
frequency_df = df.groupby("CustomerID")["InvoiceNo"].nunique().reset_index()
|
87 |
+
frequency_df.rename(columns={"InvoiceNo": "Frequency"}, inplace=True)
|
88 |
+
|
89 |
+
# Monetary Calculation
|
90 |
+
monetary_df = df.groupby("CustomerID")["Amount"].sum().reset_index()
|
91 |
+
monetary_df.rename(columns={"Amount": "Monetary"}, inplace=True)
|
92 |
+
|
93 |
+
# Combine RFM
|
94 |
+
rfm = recency_df.merge(frequency_df, on="CustomerID").merge(monetary_df, on="CustomerID")
|
95 |
+
st.write("### RFM Data")
|
96 |
+
st.write(rfm.head())
|
97 |
+
|
98 |
+
# Visualize RFM Distributions
|
99 |
+
fig_rfm = px.scatter_3d(
|
100 |
+
rfm,
|
101 |
+
x="Recency",
|
102 |
+
y="Frequency",
|
103 |
+
z="Monetary",
|
104 |
+
color="Monetary",
|
105 |
+
size="Monetary",
|
106 |
+
title="RFM Scatter Plot"
|
107 |
+
)
|
108 |
+
st.plotly_chart(fig_rfm)
|
109 |
+
|
110 |
+
# K-Means Clustering
|
111 |
+
st.header("π K-Means Clustering")
|
112 |
+
st.sidebar.subheader("Clustering Parameters")
|
113 |
+
num_clusters = st.sidebar.slider("Number of Clusters", 2, 10, value=4)
|
114 |
+
|
115 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
116 |
+
rfm["Cluster"] = kmeans.fit_predict(rfm[["Recency", "Frequency", "Monetary"]])
|
117 |
+
|
118 |
+
# Cluster Visualization
|
119 |
+
fig_cluster = px.scatter_3d(
|
120 |
+
rfm,
|
121 |
+
x="Recency",
|
122 |
+
y="Frequency",
|
123 |
+
z="Monetary",
|
124 |
+
color="Cluster",
|
125 |
+
title=f"Customer Segmentation with {num_clusters} Clusters",
|
126 |
+
symbol="Cluster",
|
127 |
+
size="Monetary",
|
128 |
+
)
|
129 |
+
st.plotly_chart(fig_cluster)
|
130 |
+
|
131 |
+
# Export Data
|
132 |
+
st.header("π€ Export Processed Data")
|
133 |
+
if st.button("Export RFM Data"):
|
134 |
+
rfm.to_csv("rfm_data.csv", index=False)
|
135 |
+
st.success("RFM data exported as `rfm_data.csv`!")
|
136 |
+
|
137 |
+
st.markdown("### Enjoy exploring your customer data! π")
|