Spaces:
Sleeping
Sleeping
Viraj2307
commited on
Commit
Β·
f114b1f
1
Parent(s):
c4751ad
Changes
Browse files- app.py +42 -38
- requirements.txt +1 -1
app.py
CHANGED
@@ -6,7 +6,7 @@ from sklearn.cluster import KMeans
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
import plotly.express as px
|
9 |
-
from
|
10 |
|
11 |
# Set the page configuration
|
12 |
st.set_page_config(page_title="Customer Segmentation and Product Recommendation", layout="wide")
|
@@ -131,43 +131,47 @@ fig_cluster = px.scatter_3d(
|
|
131 |
st.plotly_chart(fig_cluster)
|
132 |
|
133 |
# Product Recommendation
|
134 |
-
st.header("
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
st.
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
|
172 |
# Export Data
|
173 |
st.header("π€ Export Processed Data")
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
import plotly.express as px
|
9 |
+
from gensim.models import Word2Vec
|
10 |
|
11 |
# Set the page configuration
|
12 |
st.set_page_config(page_title="Customer Segmentation and Product Recommendation", layout="wide")
|
|
|
131 |
st.plotly_chart(fig_cluster)
|
132 |
|
133 |
# Product Recommendation
|
134 |
+
st.header("π― Product Recommendations")
|
135 |
+
|
136 |
+
# Train Word2Vec Model
|
137 |
+
st.subheader("π Train Word2Vec Model")
|
138 |
+
with st.spinner("Training Word2Vec model..."):
|
139 |
+
invoices = df.groupby("InvoiceNo")["Description"].apply(list) # Group products by invoices
|
140 |
+
model = Word2Vec(sentences=invoices, vector_size=50, window=5, min_count=1, workers=4, sg=1)
|
141 |
+
st.success("Word2Vec model trained successfully!")
|
142 |
+
|
143 |
+
# Display similar products
|
144 |
+
st.subheader("π Find Similar Products")
|
145 |
+
selected_product = st.selectbox("Select a product to find recommendations:", df["Description"].unique())
|
146 |
+
|
147 |
+
if st.button("Recommend Products"):
|
148 |
+
try:
|
149 |
+
similar_products = model.wv.most_similar(selected_product, topn=5) # Top 5 recommendations
|
150 |
+
st.write("### Recommended Products")
|
151 |
+
for product, similarity in similar_products:
|
152 |
+
st.write(f"- **{product}** (Similarity: {similarity:.2f})")
|
153 |
+
except KeyError:
|
154 |
+
st.warning("The selected product is not in the vocabulary. Please choose another.")
|
155 |
+
|
156 |
+
# Recommendations for Cluster-Based Segmentation
|
157 |
+
st.subheader("π Recommendations by Cluster")
|
158 |
+
cluster_to_recommend = st.selectbox("Select a cluster:", rfm["Cluster"].unique())
|
159 |
+
|
160 |
+
if st.button("Recommend for Cluster"):
|
161 |
+
cluster_customers = rfm[rfm["Cluster"] == cluster_to_recommend]["CustomerID"]
|
162 |
+
cluster_df = df[df["CustomerID"].isin(cluster_customers)]
|
163 |
+
cluster_invoices = cluster_df.groupby("InvoiceNo")["Description"].apply(list)
|
164 |
+
|
165 |
+
with st.spinner("Training cluster-specific Word2Vec model..."):
|
166 |
+
cluster_model = Word2Vec(sentences=cluster_invoices, vector_size=50, window=5, min_count=1, workers=4, sg=1)
|
167 |
+
|
168 |
+
try:
|
169 |
+
cluster_similar_products = cluster_model.wv.most_similar(selected_product, topn=5)
|
170 |
+
st.write(f"### Recommended Products for Cluster {cluster_to_recommend}")
|
171 |
+
for product, similarity in cluster_similar_products:
|
172 |
+
st.write(f"- **{product}** (Similarity: {similarity:.2f})")
|
173 |
+
except KeyError:
|
174 |
+
st.warning("The selected product is not in the vocabulary for this cluster.")
|
175 |
|
176 |
# Export Data
|
177 |
st.header("π€ Export Processed Data")
|
requirements.txt
CHANGED
@@ -6,4 +6,4 @@ streamlit
|
|
6 |
scikit-learn
|
7 |
plotly
|
8 |
tqdm
|
9 |
-
|
|
|
6 |
scikit-learn
|
7 |
plotly
|
8 |
tqdm
|
9 |
+
gensim
|