Vardhan-kuppala's picture
Upload 3 files
abf8cf8 verified
import gradio as gr
import pandas as pd
import numpy as np
from typing import List, Dict, Tuple, Optional
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain_huggingface import HuggingFaceEndpoint
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
import os
# Configuration
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
api_token = os.getenv("HF_TOKEN")
# Define system message for consistent LLM behavior
SYSTEM_MESSAGE = """You are a microcontroller selection expert assistant. Your task is to:
1. Analyze user requirements carefully
2. Compare available microcontrollers based on ALL provided specifications
3. Recommend the best matches with detailed explanations
4. Consider trade-offs between different features
5. Highlight any potential concerns or limitations
When making recommendations:
- Always mention specific model numbers and their key features
- Explain why each recommendation matches the requirements
- Compare pros and cons between recommendations
- Note any missing specifications that might be important"""
# Custom prompt templates
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template("""
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question that captures all relevant context from the conversation.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:""")
QA_PROMPT = PromptTemplate.from_template("""
{system_message}
Context information from microcontroller database:
{context}
User Query: {question}
Provide a detailed response following these steps:
1. Analyze Requirements: Clearly state the key requirements from the query
2. Matching Products: List and compare the best matching microcontrollers
3. Feature Analysis: Detail how each recommended product meets the requirements
4. Trade-offs: Explain any compromises or trade-offs
5. Additional Considerations: Mention any important factors the user should consider
Response:""")
def validate_excel_format(df: pd.DataFrame) -> bool:
"""Validate if Excel file has required specifications as columns"""
expected_specs = [
'Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu',
'Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)',
'Lead Count (#)', 'Supply Voltage (V)', 'Operating Freq (Max) (MHz)',
'RTC', 'LVD or PVD', 'DMA', 'I/O Ports', 'Timer', 'ADC', 'DAC',
'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN',
'Human machine interface', 'pkg.Type', 'Temp.Range'
]
# Check if at least the essential columns exist
essential_specs = ['Product ID', 'Product Title', 'Bit Size', 'cpu']
missing_essential = [col for col in essential_specs if col not in df.columns]
if missing_essential:
print(f"Missing essential columns: {missing_essential}")
return False
# Print found and missing columns for debugging
found_specs = [col for col in expected_specs if col in df.columns]
missing_specs = [col for col in expected_specs if col not in df.columns]
print("Found specifications:", found_specs)
print("Missing specifications:", missing_specs)
return True
def normalize_column_name(col_name: str) -> str:
"""Normalize column names to handle different variations"""
# Convert to lowercase and remove special characters
normalized = str(col_name).lower().strip()
normalized = ''.join(c for c in normalized if c.isalnum() or c.isspace())
# Common variations mapping
variations = {
'productid': 'Product ID',
'producttitle': 'Product Title',
'programmemorykb': 'Program Memory (KB)',
'programmemory': 'Program Memory (KB)',
'flashmemory': 'Program Memory (KB)',
'dataflashkb': 'Data Flash (KB)',
'dataflash': 'Data Flash (KB)',
'ramkb': 'RAM (KB)',
'ram': 'RAM (KB)',
'bitsize': 'Bit Size',
'cpucore': 'cpu',
'processor': 'cpu',
'supplyvoltage': 'Supply Voltage (V)',
'voltage': 'Supply Voltage (V)',
'operatingfreq': 'Operating Freq (Max) (MHz)',
'frequency': 'Operating Freq (Max) (MHz)',
'maxfreq': 'Operating Freq (Max) (MHz)',
'leadcount': 'Lead Count (#)',
'pins': 'Lead Count (#)',
'pincount': 'Lead Count (#)',
'interface': 'I/O Ports',
'ioports': 'I/O Ports',
'packagetype': 'pkg.Type',
'package': 'pkg.Type',
'temprange': 'Temp.Range',
'temperature': 'Temp.Range',
'humanmachineinterface': 'Human machine interface',
'hmi': 'Human machine interface'
}
# Return original if no mapping found
return variations.get(normalized.replace(' ', ''), col_name)
def validate_and_map_columns(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, str]]:
"""Validate and map Excel columns to standard names"""
# Create mapping of found columns
column_mapping = {}
new_columns = []
for col in df.columns:
normalized_name = normalize_column_name(col)
column_mapping[col] = normalized_name
new_columns.append(normalized_name)
# Rename columns in DataFrame
df.columns = new_columns
# Print found specifications for debugging
print("Found specifications:", new_columns)
return df, column_mapping
def clean_excel_data(df: pd.DataFrame) -> pd.DataFrame:
"""Clean and prepare Excel data with flexible handling"""
# Replace various forms of empty/NA values
df = df.replace([np.nan, 'N/A', 'NA', '-', 'None', 'none', 'nil', 'NIL'], '')
# Numeric columns with their units
numeric_specs = {
'Program Memory (KB)': 'KB',
'Data Flash (KB)': 'KB',
'RAM (KB)': 'KB',
'Lead Count (#)': '',
'Supply Voltage (V)': 'V',
'Operating Freq (Max) (MHz)': 'MHz'
}
# Process each numeric column if it exists
for col, unit in numeric_specs.items():
if col in df.columns:
# Extract numeric values from string if needed
df[col] = df[col].astype(str).str.extract(r'(\d+\.?\d*)').astype(float)
# Clean boolean/feature columns
feature_cols = ['RTC', 'DMA', 'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN']
for col in feature_cols:
if col in df.columns:
df[col] = df[col].astype(str).str.lower()
# Map various positive indicators to 'Yes'
df[col] = df[col].apply(lambda x: 'Yes' if x in ['yes', 'y', '1', 'true', 'available', 'supported', '✓', '√'] else 'No')
return df
def process_mc_excel(excel_file: str) -> Tuple[List[Document], Optional[str]]:
"""Convert microcontroller Excel data to Document objects with flexible handling"""
try:
print(f"Reading Excel file: {excel_file}")
df = pd.read_excel(excel_file)
print(f"Excel file loaded. Shape: {df.shape}")
# Validate and map columns
df, column_mapping = validate_and_map_columns(df)
df = clean_excel_data(df)
# Define feature groups with optional fields
feature_groups = {
'core_specs': {
'title': 'Core Specifications',
'fields': ['Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu'],
'required': ['Product ID', 'Product Title'] # Minimum required fields
},
'memory': {
'title': 'Memory',
'fields': ['Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)'],
'required': []
},
'communication': {
'title': 'Communication Interfaces',
'fields': ['Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'],
'required': []
},
'peripherals': {
'title': 'Peripherals',
'fields': ['Timer', 'ADC', 'DAC', 'RTC', 'DMA'],
'required': []
},
'power': {
'title': 'Power and Performance',
'fields': ['Supply Voltage (V)', 'Operating Freq (Max) (MHz)', 'LVD or PVD'],
'required': []
},
'physical': {
'title': 'Physical Specifications',
'fields': ['Lead Count (#)', 'pkg.Type', 'Temp.Range'],
'required': []
},
'interface': {
'title': 'Interfaces',
'fields': ['I/O Ports', 'Human machine interface'],
'required': []
}
}
# Check for minimum required fields
required_fields = set()
for group in feature_groups.values():
required_fields.update(group['required'])
missing_required = [field for field in required_fields if field not in df.columns]
if missing_required:
return [], f"Missing essential columns: {', '.join(missing_required)}"
documents = []
for idx, row in df.iterrows():
content_parts = []
for group_name, group_info in feature_groups.items():
group_content = []
for field in group_info['fields']:
if field in df.columns and pd.notna(row.get(field)) and str(row.get(field)).strip() != '':
value = row[field]
if isinstance(value, (int, float)):
if 'KB' in field:
value = f"{value:g} KB"
elif 'MHz' in field:
value = f"{value:g} MHz"
elif 'V' in field:
value = f"{value:g}V"
else:
value = f"{value:g}"
group_content.append(f"{field}: {value}")
if group_content:
content_parts.append(f"{group_info['title']}:\n" + "\n".join(group_content))
# Create content string
content = "\n\n".join(content_parts)
# Create metadata with available fields
metadata = {
"source": "excel",
"row": idx,
"product_id": str(row.get('Product ID', '')),
"product_title": str(row.get('Product Title', '')),
}
# Add optional metadata if available
optional_metadata = {
"bit_size": "Bit Size",
"cpu": "cpu",
"memory": "Program Memory (KB)",
"interfaces": ["USB", "Ethernet", "CAN", "SPI", "I2C"]
}
for meta_key, field in optional_metadata.items():
if isinstance(field, list):
# Handle interface list
metadata[meta_key] = [intf for intf in field if intf in df.columns and row.get(intf) == 'Yes']
elif field in df.columns:
value = row.get(field)
if pd.notna(value) and str(value).strip() != '':
if field == 'Program Memory (KB)':
metadata[meta_key] = f"{value} KB"
else:
metadata[meta_key] = str(value)
doc = Document(page_content=content, metadata=metadata)
documents.append(doc)
if not documents:
return [], "No valid microcontroller data found in Excel file."
print(f"Successfully processed {len(documents)} microcontrollers")
return documents, None
except Exception as e:
import traceback
print("Excel processing error:")
print(traceback.format_exc())
return [], f"Error processing Excel file: {str(e)}"
def create_vector_db(documents: List[Document]) -> Optional[FAISS]:
"""Create FAISS vector database with error handling"""
try:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2048, # Larger chunk size for complete spec retention
chunk_overlap=200,
separators=["\n\n", "\n", ". ", ", ", " "]
)
splits = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
return FAISS.from_documents(splits, embeddings)
except Exception as e:
print(f"Error creating vector database: {str(e)}")
return None
def initialize_llm_chain(vector_db):
"""Initialize LLM chain with enhanced prompting"""
try:
llm = HuggingFaceEndpoint(
repo_id=MODEL_NAME,
huggingfacehub_api_token=api_token,
temperature=0.3,
max_new_tokens=2048,
top_k=5,
repetition_penalty=1.1
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever(
search_type="mmr",
search_kwargs={
"k": 5,
"fetch_k": 8,
"lambda_mult": 0.7
}
)
qa_prompt = QA_PROMPT.partial(system_message=SYSTEM_MESSAGE)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
return_source_documents=True,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
combine_docs_chain_kwargs={'prompt': qa_prompt}
)
return chain
except Exception as e:
print(f"Error initializing LLM chain: {str(e)}")
return None
def format_mc_response(source_doc: Document) -> str:
"""Format microcontroller source documents for display with robust metadata handling"""
try:
if source_doc.metadata.get('source') == 'excel':
# Get metadata with default values for missing fields
product_title = source_doc.metadata.get('product_title', 'N/A')
cpu = source_doc.metadata.get('cpu', 'Not specified')
memory = source_doc.metadata.get('memory', 'Not specified')
formatted_response = (
f"Product: {product_title}\n"
f"CPU: {cpu}\n"
f"Memory: {memory}\n\n"
f"Specifications:\n{source_doc.page_content}"
)
return formatted_response
return source_doc.page_content
except Exception as e:
# Fallback to returning just the page content if there's any error
print(f"Error formatting response: {str(e)}")
return source_doc.page_content
def process_query(qa_chain, message: str, history: List) -> Tuple[str, List[str]]:
"""Process user query with enhanced context handling"""
try:
# Add requirement analysis to user query
enhanced_query = f"""Analyze the following microcontroller requirements and provide detailed recommendations:
User Requirements: {message}
Please consider:
1. Core specifications and performance requirements
2. Memory requirements and constraints
3. Communication interfaces needed
4. Peripheral requirements
5. Power and operating conditions
6. Physical and environmental constraints
Provide a detailed comparison of the best matching microcontrollers."""
response = qa_chain({
"question": enhanced_query,
"chat_history": [(hist[0], hist[1]) for hist in history]
})
sources = response["source_documents"][:3]
source_contents = [format_mc_response(source) for source in sources]
return response["answer"], source_contents
except Exception as e:
return f"Error processing query: {str(e)}", []
def create_interface():
"""Create a Gradio interface with improved horizontal alignment and block sizes."""
with gr.Blocks(css="""
#main-title {
color: #00509e;
font-family: 'Arial', sans-serif;
text-align: center;
margin-bottom: 20px;
}
#description {
color: #333;
font-family: 'Arial', sans-serif;
text-align: center;
margin-bottom: 30px;
}
#initialize-btn {
background-color: #00509e;
color: white;
border: none;
padding: 5px 15px;
font-size: 14px;
}
#initialize-btn:hover {
background-color: #003f7f;
}
.gradio-row {
margin-bottom: 20px;
}
""") as demo:
# Title and description
gr.HTML("<h1 id='main-title'>Microcontroller Selection Assistant</h1>")
gr.HTML("<p id='description'>Select a sample file or upload your database. Then describe your requirements for tailored recommendations.</p>")
# File selection section (sample and upload)
with gr.Row(elem_id="file-section", equal_height=True):
with gr.Column(scale=1):
sample_file = gr.Dropdown(
label="Sample Files",
choices=["test_data.xlsx"],
value="test_data.xlsx"
)
with gr.Column(scale=1):
excel_file = gr.File(
label="Upload Microcontroller Database (Excel)",
file_types=[".xlsx", ".xls"],
)
# Initialization button and status
with gr.Row(equal_height=True):
initialize_btn = gr.Button("Initialize System", elem_id="initialize-btn")
status = gr.Textbox(label="Status", value="Not initialized", interactive=False)
# Chat section
with gr.Row(equal_height=True):
chatbot = gr.Chatbot(label="Chat", height=400)
# Query input and buttons
with gr.Row(equal_height=True):
query = gr.Textbox(
placeholder="Describe your microcontroller requirements (e.g., '32-bit MCU with USB support and 256KB flash memory')",
label="Query",
lines=3
)
with gr.Row(equal_height=True):
submit_btn = gr.Button("Submit Query")
clear_btn = gr.Button("Clear Chat")
# State handlers
vector_db_state = gr.State()
qa_chain_state = gr.State()
def init_system(file, sample):
if not file and not sample:
return None, None, "Please upload an Excel file or select a sample."
file_path = file.name if file else sample
docs, error = process_mc_excel(file_path) # Pass Excel file path here
if error:
return None, None, error
vector_db = create_vector_db(docs)
if not vector_db:
return None, None, "Failed to create vector database."
qa_chain = initialize_llm_chain(vector_db)
if not qa_chain:
return None, None, "Failed to initialize LLM chain."
return vector_db, qa_chain, "System initialized successfully!"
def handle_query(qa_chain, message, history):
if qa_chain is None:
return history + [("Error", "Please initialize the system first.")], ""
answer, sources = process_query(qa_chain, message, history)
# Include sources in the answer
if sources:
answer += "\n\nRelevant Products:\n" + "\n\n".join(sources)
return history + [(message, answer)], ""
# Button actions
initialize_btn.click(
init_system,
inputs=[excel_file, sample_file],
outputs=[vector_db_state, qa_chain_state, status]
)
submit_btn.click(
handle_query,
inputs=[qa_chain_state, query, chatbot],
outputs=[chatbot, query]
)
clear_btn.click(
lambda: ([], ""),
inputs=[],
outputs=[chatbot, query]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(debug=True)