|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
from typing import List, Dict, Tuple, Optional |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.docstore.document import Document |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.prompts import PromptTemplate |
|
import os |
|
|
|
|
|
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2" |
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
SYSTEM_MESSAGE = """You are a microcontroller selection expert assistant. Your task is to: |
|
1. Analyze user requirements carefully |
|
2. Compare available microcontrollers based on ALL provided specifications |
|
3. Recommend the best matches with detailed explanations |
|
4. Consider trade-offs between different features |
|
5. Highlight any potential concerns or limitations |
|
|
|
When making recommendations: |
|
- Always mention specific model numbers and their key features |
|
- Explain why each recommendation matches the requirements |
|
- Compare pros and cons between recommendations |
|
- Note any missing specifications that might be important""" |
|
|
|
|
|
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(""" |
|
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question that captures all relevant context from the conversation. |
|
|
|
Chat History: |
|
{chat_history} |
|
|
|
Follow Up Input: {question} |
|
|
|
Standalone question:""") |
|
|
|
QA_PROMPT = PromptTemplate.from_template(""" |
|
{system_message} |
|
|
|
Context information from microcontroller database: |
|
{context} |
|
|
|
User Query: {question} |
|
|
|
Provide a detailed response following these steps: |
|
1. Analyze Requirements: Clearly state the key requirements from the query |
|
2. Matching Products: List and compare the best matching microcontrollers |
|
3. Feature Analysis: Detail how each recommended product meets the requirements |
|
4. Trade-offs: Explain any compromises or trade-offs |
|
5. Additional Considerations: Mention any important factors the user should consider |
|
|
|
Response:""") |
|
|
|
def validate_excel_format(df: pd.DataFrame) -> bool: |
|
"""Validate if Excel file has required specifications as columns""" |
|
expected_specs = [ |
|
'Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu', |
|
'Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)', |
|
'Lead Count (#)', 'Supply Voltage (V)', 'Operating Freq (Max) (MHz)', |
|
'RTC', 'LVD or PVD', 'DMA', 'I/O Ports', 'Timer', 'ADC', 'DAC', |
|
'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN', |
|
'Human machine interface', 'pkg.Type', 'Temp.Range' |
|
] |
|
|
|
|
|
essential_specs = ['Product ID', 'Product Title', 'Bit Size', 'cpu'] |
|
missing_essential = [col for col in essential_specs if col not in df.columns] |
|
|
|
if missing_essential: |
|
print(f"Missing essential columns: {missing_essential}") |
|
return False |
|
|
|
|
|
found_specs = [col for col in expected_specs if col in df.columns] |
|
missing_specs = [col for col in expected_specs if col not in df.columns] |
|
|
|
print("Found specifications:", found_specs) |
|
print("Missing specifications:", missing_specs) |
|
|
|
return True |
|
|
|
|
|
def normalize_column_name(col_name: str) -> str: |
|
"""Normalize column names to handle different variations""" |
|
|
|
normalized = str(col_name).lower().strip() |
|
normalized = ''.join(c for c in normalized if c.isalnum() or c.isspace()) |
|
|
|
|
|
variations = { |
|
'productid': 'Product ID', |
|
'producttitle': 'Product Title', |
|
'programmemorykb': 'Program Memory (KB)', |
|
'programmemory': 'Program Memory (KB)', |
|
'flashmemory': 'Program Memory (KB)', |
|
'dataflashkb': 'Data Flash (KB)', |
|
'dataflash': 'Data Flash (KB)', |
|
'ramkb': 'RAM (KB)', |
|
'ram': 'RAM (KB)', |
|
'bitsize': 'Bit Size', |
|
'cpucore': 'cpu', |
|
'processor': 'cpu', |
|
'supplyvoltage': 'Supply Voltage (V)', |
|
'voltage': 'Supply Voltage (V)', |
|
'operatingfreq': 'Operating Freq (Max) (MHz)', |
|
'frequency': 'Operating Freq (Max) (MHz)', |
|
'maxfreq': 'Operating Freq (Max) (MHz)', |
|
'leadcount': 'Lead Count (#)', |
|
'pins': 'Lead Count (#)', |
|
'pincount': 'Lead Count (#)', |
|
'interface': 'I/O Ports', |
|
'ioports': 'I/O Ports', |
|
'packagetype': 'pkg.Type', |
|
'package': 'pkg.Type', |
|
'temprange': 'Temp.Range', |
|
'temperature': 'Temp.Range', |
|
'humanmachineinterface': 'Human machine interface', |
|
'hmi': 'Human machine interface' |
|
} |
|
|
|
|
|
return variations.get(normalized.replace(' ', ''), col_name) |
|
|
|
def validate_and_map_columns(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, str]]: |
|
"""Validate and map Excel columns to standard names""" |
|
|
|
column_mapping = {} |
|
new_columns = [] |
|
|
|
for col in df.columns: |
|
normalized_name = normalize_column_name(col) |
|
column_mapping[col] = normalized_name |
|
new_columns.append(normalized_name) |
|
|
|
|
|
df.columns = new_columns |
|
|
|
|
|
print("Found specifications:", new_columns) |
|
|
|
return df, column_mapping |
|
|
|
|
|
def clean_excel_data(df: pd.DataFrame) -> pd.DataFrame: |
|
"""Clean and prepare Excel data with flexible handling""" |
|
|
|
df = df.replace([np.nan, 'N/A', 'NA', '-', 'None', 'none', 'nil', 'NIL'], '') |
|
|
|
|
|
numeric_specs = { |
|
'Program Memory (KB)': 'KB', |
|
'Data Flash (KB)': 'KB', |
|
'RAM (KB)': 'KB', |
|
'Lead Count (#)': '', |
|
'Supply Voltage (V)': 'V', |
|
'Operating Freq (Max) (MHz)': 'MHz' |
|
} |
|
|
|
|
|
for col, unit in numeric_specs.items(): |
|
if col in df.columns: |
|
|
|
df[col] = df[col].astype(str).str.extract(r'(\d+\.?\d*)').astype(float) |
|
|
|
|
|
feature_cols = ['RTC', 'DMA', 'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'] |
|
for col in feature_cols: |
|
if col in df.columns: |
|
df[col] = df[col].astype(str).str.lower() |
|
|
|
df[col] = df[col].apply(lambda x: 'Yes' if x in ['yes', 'y', '1', 'true', 'available', 'supported', '✓', '√'] else 'No') |
|
|
|
return df |
|
|
|
def process_mc_excel(excel_file: str) -> Tuple[List[Document], Optional[str]]: |
|
"""Convert microcontroller Excel data to Document objects with flexible handling""" |
|
try: |
|
print(f"Reading Excel file: {excel_file}") |
|
df = pd.read_excel(excel_file) |
|
print(f"Excel file loaded. Shape: {df.shape}") |
|
|
|
|
|
df, column_mapping = validate_and_map_columns(df) |
|
df = clean_excel_data(df) |
|
|
|
|
|
feature_groups = { |
|
'core_specs': { |
|
'title': 'Core Specifications', |
|
'fields': ['Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu'], |
|
'required': ['Product ID', 'Product Title'] |
|
}, |
|
'memory': { |
|
'title': 'Memory', |
|
'fields': ['Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)'], |
|
'required': [] |
|
}, |
|
'communication': { |
|
'title': 'Communication Interfaces', |
|
'fields': ['Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'], |
|
'required': [] |
|
}, |
|
'peripherals': { |
|
'title': 'Peripherals', |
|
'fields': ['Timer', 'ADC', 'DAC', 'RTC', 'DMA'], |
|
'required': [] |
|
}, |
|
'power': { |
|
'title': 'Power and Performance', |
|
'fields': ['Supply Voltage (V)', 'Operating Freq (Max) (MHz)', 'LVD or PVD'], |
|
'required': [] |
|
}, |
|
'physical': { |
|
'title': 'Physical Specifications', |
|
'fields': ['Lead Count (#)', 'pkg.Type', 'Temp.Range'], |
|
'required': [] |
|
}, |
|
'interface': { |
|
'title': 'Interfaces', |
|
'fields': ['I/O Ports', 'Human machine interface'], |
|
'required': [] |
|
} |
|
} |
|
|
|
|
|
required_fields = set() |
|
for group in feature_groups.values(): |
|
required_fields.update(group['required']) |
|
|
|
missing_required = [field for field in required_fields if field not in df.columns] |
|
if missing_required: |
|
return [], f"Missing essential columns: {', '.join(missing_required)}" |
|
|
|
documents = [] |
|
for idx, row in df.iterrows(): |
|
content_parts = [] |
|
|
|
for group_name, group_info in feature_groups.items(): |
|
group_content = [] |
|
for field in group_info['fields']: |
|
if field in df.columns and pd.notna(row.get(field)) and str(row.get(field)).strip() != '': |
|
value = row[field] |
|
if isinstance(value, (int, float)): |
|
if 'KB' in field: |
|
value = f"{value:g} KB" |
|
elif 'MHz' in field: |
|
value = f"{value:g} MHz" |
|
elif 'V' in field: |
|
value = f"{value:g}V" |
|
else: |
|
value = f"{value:g}" |
|
group_content.append(f"{field}: {value}") |
|
|
|
if group_content: |
|
content_parts.append(f"{group_info['title']}:\n" + "\n".join(group_content)) |
|
|
|
|
|
content = "\n\n".join(content_parts) |
|
|
|
|
|
metadata = { |
|
"source": "excel", |
|
"row": idx, |
|
"product_id": str(row.get('Product ID', '')), |
|
"product_title": str(row.get('Product Title', '')), |
|
} |
|
|
|
|
|
optional_metadata = { |
|
"bit_size": "Bit Size", |
|
"cpu": "cpu", |
|
"memory": "Program Memory (KB)", |
|
"interfaces": ["USB", "Ethernet", "CAN", "SPI", "I2C"] |
|
} |
|
|
|
for meta_key, field in optional_metadata.items(): |
|
if isinstance(field, list): |
|
|
|
metadata[meta_key] = [intf for intf in field if intf in df.columns and row.get(intf) == 'Yes'] |
|
elif field in df.columns: |
|
value = row.get(field) |
|
if pd.notna(value) and str(value).strip() != '': |
|
if field == 'Program Memory (KB)': |
|
metadata[meta_key] = f"{value} KB" |
|
else: |
|
metadata[meta_key] = str(value) |
|
|
|
doc = Document(page_content=content, metadata=metadata) |
|
documents.append(doc) |
|
|
|
if not documents: |
|
return [], "No valid microcontroller data found in Excel file." |
|
|
|
print(f"Successfully processed {len(documents)} microcontrollers") |
|
return documents, None |
|
|
|
except Exception as e: |
|
import traceback |
|
print("Excel processing error:") |
|
print(traceback.format_exc()) |
|
return [], f"Error processing Excel file: {str(e)}" |
|
|
|
def create_vector_db(documents: List[Document]) -> Optional[FAISS]: |
|
"""Create FAISS vector database with error handling""" |
|
try: |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=2048, |
|
chunk_overlap=200, |
|
separators=["\n\n", "\n", ". ", ", ", " "] |
|
) |
|
|
|
splits = text_splitter.split_documents(documents) |
|
|
|
embeddings = HuggingFaceEmbeddings( |
|
model_name="sentence-transformers/all-mpnet-base-v2" |
|
) |
|
|
|
return FAISS.from_documents(splits, embeddings) |
|
|
|
except Exception as e: |
|
print(f"Error creating vector database: {str(e)}") |
|
return None |
|
|
|
def initialize_llm_chain(vector_db): |
|
"""Initialize LLM chain with enhanced prompting""" |
|
try: |
|
llm = HuggingFaceEndpoint( |
|
repo_id=MODEL_NAME, |
|
huggingfacehub_api_token=api_token, |
|
temperature=0.3, |
|
max_new_tokens=2048, |
|
top_k=5, |
|
repetition_penalty=1.1 |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever = vector_db.as_retriever( |
|
search_type="mmr", |
|
search_kwargs={ |
|
"k": 5, |
|
"fetch_k": 8, |
|
"lambda_mult": 0.7 |
|
} |
|
) |
|
|
|
qa_prompt = QA_PROMPT.partial(system_message=SYSTEM_MESSAGE) |
|
|
|
chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=retriever, |
|
memory=memory, |
|
return_source_documents=True, |
|
condense_question_prompt=CONDENSE_QUESTION_PROMPT, |
|
combine_docs_chain_kwargs={'prompt': qa_prompt} |
|
) |
|
|
|
return chain |
|
|
|
except Exception as e: |
|
print(f"Error initializing LLM chain: {str(e)}") |
|
return None |
|
|
|
def format_mc_response(source_doc: Document) -> str: |
|
"""Format microcontroller source documents for display with robust metadata handling""" |
|
try: |
|
if source_doc.metadata.get('source') == 'excel': |
|
|
|
product_title = source_doc.metadata.get('product_title', 'N/A') |
|
cpu = source_doc.metadata.get('cpu', 'Not specified') |
|
memory = source_doc.metadata.get('memory', 'Not specified') |
|
|
|
formatted_response = ( |
|
f"Product: {product_title}\n" |
|
f"CPU: {cpu}\n" |
|
f"Memory: {memory}\n\n" |
|
f"Specifications:\n{source_doc.page_content}" |
|
) |
|
return formatted_response |
|
return source_doc.page_content |
|
|
|
except Exception as e: |
|
|
|
print(f"Error formatting response: {str(e)}") |
|
return source_doc.page_content |
|
|
|
def process_query(qa_chain, message: str, history: List) -> Tuple[str, List[str]]: |
|
"""Process user query with enhanced context handling""" |
|
try: |
|
|
|
enhanced_query = f"""Analyze the following microcontroller requirements and provide detailed recommendations: |
|
|
|
User Requirements: {message} |
|
|
|
Please consider: |
|
1. Core specifications and performance requirements |
|
2. Memory requirements and constraints |
|
3. Communication interfaces needed |
|
4. Peripheral requirements |
|
5. Power and operating conditions |
|
6. Physical and environmental constraints |
|
|
|
Provide a detailed comparison of the best matching microcontrollers.""" |
|
|
|
response = qa_chain({ |
|
"question": enhanced_query, |
|
"chat_history": [(hist[0], hist[1]) for hist in history] |
|
}) |
|
|
|
sources = response["source_documents"][:3] |
|
source_contents = [format_mc_response(source) for source in sources] |
|
|
|
return response["answer"], source_contents |
|
|
|
except Exception as e: |
|
return f"Error processing query: {str(e)}", [] |
|
|
|
|
|
def create_interface(): |
|
"""Create a Gradio interface with improved horizontal alignment and block sizes.""" |
|
with gr.Blocks(css=""" |
|
#main-title { |
|
color: #00509e; |
|
font-family: 'Arial', sans-serif; |
|
text-align: center; |
|
margin-bottom: 20px; |
|
} |
|
#description { |
|
color: #333; |
|
font-family: 'Arial', sans-serif; |
|
text-align: center; |
|
margin-bottom: 30px; |
|
} |
|
#initialize-btn { |
|
background-color: #00509e; |
|
color: white; |
|
border: none; |
|
padding: 5px 15px; |
|
font-size: 14px; |
|
} |
|
#initialize-btn:hover { |
|
background-color: #003f7f; |
|
} |
|
.gradio-row { |
|
margin-bottom: 20px; |
|
} |
|
""") as demo: |
|
|
|
gr.HTML("<h1 id='main-title'>Microcontroller Selection Assistant</h1>") |
|
gr.HTML("<p id='description'>Select a sample file or upload your database. Then describe your requirements for tailored recommendations.</p>") |
|
|
|
|
|
with gr.Row(elem_id="file-section", equal_height=True): |
|
with gr.Column(scale=1): |
|
sample_file = gr.Dropdown( |
|
label="Sample Files", |
|
choices=["test_data.xlsx"], |
|
value="test_data.xlsx" |
|
) |
|
with gr.Column(scale=1): |
|
excel_file = gr.File( |
|
label="Upload Microcontroller Database (Excel)", |
|
file_types=[".xlsx", ".xls"], |
|
) |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
initialize_btn = gr.Button("Initialize System", elem_id="initialize-btn") |
|
status = gr.Textbox(label="Status", value="Not initialized", interactive=False) |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
chatbot = gr.Chatbot(label="Chat", height=400) |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
query = gr.Textbox( |
|
placeholder="Describe your microcontroller requirements (e.g., '32-bit MCU with USB support and 256KB flash memory')", |
|
label="Query", |
|
lines=3 |
|
) |
|
|
|
with gr.Row(equal_height=True): |
|
submit_btn = gr.Button("Submit Query") |
|
clear_btn = gr.Button("Clear Chat") |
|
|
|
|
|
vector_db_state = gr.State() |
|
qa_chain_state = gr.State() |
|
|
|
def init_system(file, sample): |
|
if not file and not sample: |
|
return None, None, "Please upload an Excel file or select a sample." |
|
|
|
file_path = file.name if file else sample |
|
|
|
docs, error = process_mc_excel(file_path) |
|
if error: |
|
return None, None, error |
|
|
|
vector_db = create_vector_db(docs) |
|
if not vector_db: |
|
return None, None, "Failed to create vector database." |
|
|
|
qa_chain = initialize_llm_chain(vector_db) |
|
if not qa_chain: |
|
return None, None, "Failed to initialize LLM chain." |
|
|
|
return vector_db, qa_chain, "System initialized successfully!" |
|
|
|
def handle_query(qa_chain, message, history): |
|
if qa_chain is None: |
|
return history + [("Error", "Please initialize the system first.")], "" |
|
|
|
answer, sources = process_query(qa_chain, message, history) |
|
|
|
|
|
if sources: |
|
answer += "\n\nRelevant Products:\n" + "\n\n".join(sources) |
|
|
|
return history + [(message, answer)], "" |
|
|
|
|
|
initialize_btn.click( |
|
init_system, |
|
inputs=[excel_file, sample_file], |
|
outputs=[vector_db_state, qa_chain_state, status] |
|
) |
|
|
|
submit_btn.click( |
|
handle_query, |
|
inputs=[qa_chain_state, query, chatbot], |
|
outputs=[chatbot, query] |
|
) |
|
|
|
clear_btn.click( |
|
lambda: ([], ""), |
|
inputs=[], |
|
outputs=[chatbot, query] |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_interface() |
|
demo.launch(debug=True) |
|
|