File size: 21,062 Bytes
abf8cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import gradio as gr
import pandas as pd
import numpy as np
from typing import List, Dict, Tuple, Optional
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain_huggingface import HuggingFaceEndpoint
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
import os

# Configuration
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
api_token = os.getenv("HF_TOKEN")

# Define system message for consistent LLM behavior
SYSTEM_MESSAGE = """You are a microcontroller selection expert assistant. Your task is to:
1. Analyze user requirements carefully
2. Compare available microcontrollers based on ALL provided specifications
3. Recommend the best matches with detailed explanations
4. Consider trade-offs between different features
5. Highlight any potential concerns or limitations

When making recommendations:
- Always mention specific model numbers and their key features
- Explain why each recommendation matches the requirements
- Compare pros and cons between recommendations
- Note any missing specifications that might be important"""

# Custom prompt templates
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template("""
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question that captures all relevant context from the conversation.

Chat History:
{chat_history}

Follow Up Input: {question}

Standalone question:""")

QA_PROMPT = PromptTemplate.from_template("""
{system_message}

Context information from microcontroller database:
{context}

User Query: {question}

Provide a detailed response following these steps:
1. Analyze Requirements: Clearly state the key requirements from the query
2. Matching Products: List and compare the best matching microcontrollers
3. Feature Analysis: Detail how each recommended product meets the requirements
4. Trade-offs: Explain any compromises or trade-offs
5. Additional Considerations: Mention any important factors the user should consider

Response:""")

def validate_excel_format(df: pd.DataFrame) -> bool:
    """Validate if Excel file has required specifications as columns"""
    expected_specs = [
        'Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu',
        'Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)',
        'Lead Count (#)', 'Supply Voltage (V)', 'Operating Freq (Max) (MHz)',
        'RTC', 'LVD or PVD', 'DMA', 'I/O Ports', 'Timer', 'ADC', 'DAC',
        'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN',
        'Human machine interface', 'pkg.Type', 'Temp.Range'
    ]
    
    # Check if at least the essential columns exist
    essential_specs = ['Product ID', 'Product Title', 'Bit Size', 'cpu']
    missing_essential = [col for col in essential_specs if col not in df.columns]
    
    if missing_essential:
        print(f"Missing essential columns: {missing_essential}")
        return False
    
    # Print found and missing columns for debugging
    found_specs = [col for col in expected_specs if col in df.columns]
    missing_specs = [col for col in expected_specs if col not in df.columns]
    
    print("Found specifications:", found_specs)
    print("Missing specifications:", missing_specs)
    
    return True


def normalize_column_name(col_name: str) -> str:
    """Normalize column names to handle different variations"""
    # Convert to lowercase and remove special characters
    normalized = str(col_name).lower().strip()
    normalized = ''.join(c for c in normalized if c.isalnum() or c.isspace())
    
    # Common variations mapping
    variations = {
        'productid': 'Product ID',
        'producttitle': 'Product Title',
        'programmemorykb': 'Program Memory (KB)',
        'programmemory': 'Program Memory (KB)',
        'flashmemory': 'Program Memory (KB)',
        'dataflashkb': 'Data Flash (KB)',
        'dataflash': 'Data Flash (KB)',
        'ramkb': 'RAM (KB)',
        'ram': 'RAM (KB)',
        'bitsize': 'Bit Size',
        'cpucore': 'cpu',
        'processor': 'cpu',
        'supplyvoltage': 'Supply Voltage (V)',
        'voltage': 'Supply Voltage (V)',
        'operatingfreq': 'Operating Freq (Max) (MHz)',
        'frequency': 'Operating Freq (Max) (MHz)',
        'maxfreq': 'Operating Freq (Max) (MHz)',
        'leadcount': 'Lead Count (#)',
        'pins': 'Lead Count (#)',
        'pincount': 'Lead Count (#)',
        'interface': 'I/O Ports',
        'ioports': 'I/O Ports',
        'packagetype': 'pkg.Type',
        'package': 'pkg.Type',
        'temprange': 'Temp.Range',
        'temperature': 'Temp.Range',
        'humanmachineinterface': 'Human machine interface',
        'hmi': 'Human machine interface'
    }
    
    # Return original if no mapping found
    return variations.get(normalized.replace(' ', ''), col_name)

def validate_and_map_columns(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, str]]:
    """Validate and map Excel columns to standard names"""
    # Create mapping of found columns
    column_mapping = {}
    new_columns = []
    
    for col in df.columns:
        normalized_name = normalize_column_name(col)
        column_mapping[col] = normalized_name
        new_columns.append(normalized_name)
    
    # Rename columns in DataFrame
    df.columns = new_columns
    
    # Print found specifications for debugging
    print("Found specifications:", new_columns)
    
    return df, column_mapping


def clean_excel_data(df: pd.DataFrame) -> pd.DataFrame:
    """Clean and prepare Excel data with flexible handling"""
    # Replace various forms of empty/NA values
    df = df.replace([np.nan, 'N/A', 'NA', '-', 'None', 'none', 'nil', 'NIL'], '')
    
    # Numeric columns with their units
    numeric_specs = {
        'Program Memory (KB)': 'KB',
        'Data Flash (KB)': 'KB',
        'RAM (KB)': 'KB',
        'Lead Count (#)': '',
        'Supply Voltage (V)': 'V',
        'Operating Freq (Max) (MHz)': 'MHz'
    }
    
    # Process each numeric column if it exists
    for col, unit in numeric_specs.items():
        if col in df.columns:
            # Extract numeric values from string if needed
            df[col] = df[col].astype(str).str.extract(r'(\d+\.?\d*)').astype(float)
    
    # Clean boolean/feature columns
    feature_cols = ['RTC', 'DMA', 'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN']
    for col in feature_cols:
        if col in df.columns:
            df[col] = df[col].astype(str).str.lower()
            # Map various positive indicators to 'Yes'
            df[col] = df[col].apply(lambda x: 'Yes' if x in ['yes', 'y', '1', 'true', 'available', 'supported', 'βœ“', '√'] else 'No')
    
    return df

def process_mc_excel(excel_file: str) -> Tuple[List[Document], Optional[str]]:
    """Convert microcontroller Excel data to Document objects with flexible handling"""
    try:
        print(f"Reading Excel file: {excel_file}")
        df = pd.read_excel(excel_file)
        print(f"Excel file loaded. Shape: {df.shape}")
        
        # Validate and map columns
        df, column_mapping = validate_and_map_columns(df)
        df = clean_excel_data(df)
        
        # Define feature groups with optional fields
        feature_groups = {
            'core_specs': {
                'title': 'Core Specifications',
                'fields': ['Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu'],
                'required': ['Product ID', 'Product Title']  # Minimum required fields
            },
            'memory': {
                'title': 'Memory',
                'fields': ['Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)'],
                'required': []
            },
            'communication': {
                'title': 'Communication Interfaces',
                'fields': ['Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'],
                'required': []
            },
            'peripherals': {
                'title': 'Peripherals',
                'fields': ['Timer', 'ADC', 'DAC', 'RTC', 'DMA'],
                'required': []
            },
            'power': {
                'title': 'Power and Performance',
                'fields': ['Supply Voltage (V)', 'Operating Freq (Max) (MHz)', 'LVD or PVD'],
                'required': []
            },
            'physical': {
                'title': 'Physical Specifications',
                'fields': ['Lead Count (#)', 'pkg.Type', 'Temp.Range'],
                'required': []
            },
            'interface': {
                'title': 'Interfaces',
                'fields': ['I/O Ports', 'Human machine interface'],
                'required': []
            }
        }
        
        # Check for minimum required fields
        required_fields = set()
        for group in feature_groups.values():
            required_fields.update(group['required'])
        
        missing_required = [field for field in required_fields if field not in df.columns]
        if missing_required:
            return [], f"Missing essential columns: {', '.join(missing_required)}"
        
        documents = []
        for idx, row in df.iterrows():
            content_parts = []
            
            for group_name, group_info in feature_groups.items():
                group_content = []
                for field in group_info['fields']:
                    if field in df.columns and pd.notna(row.get(field)) and str(row.get(field)).strip() != '':
                        value = row[field]
                        if isinstance(value, (int, float)):
                            if 'KB' in field:
                                value = f"{value:g} KB"
                            elif 'MHz' in field:
                                value = f"{value:g} MHz"
                            elif 'V' in field:
                                value = f"{value:g}V"
                            else:
                                value = f"{value:g}"
                        group_content.append(f"{field}: {value}")
                
                if group_content:
                    content_parts.append(f"{group_info['title']}:\n" + "\n".join(group_content))
            
            # Create content string
            content = "\n\n".join(content_parts)
            
            # Create metadata with available fields
            metadata = {
                "source": "excel",
                "row": idx,
                "product_id": str(row.get('Product ID', '')),
                "product_title": str(row.get('Product Title', '')),
            }
            
            # Add optional metadata if available
            optional_metadata = {
                "bit_size": "Bit Size",
                "cpu": "cpu",
                "memory": "Program Memory (KB)",
                "interfaces": ["USB", "Ethernet", "CAN", "SPI", "I2C"]
            }
            
            for meta_key, field in optional_metadata.items():
                if isinstance(field, list):
                    # Handle interface list
                    metadata[meta_key] = [intf for intf in field if intf in df.columns and row.get(intf) == 'Yes']
                elif field in df.columns:
                    value = row.get(field)
                    if pd.notna(value) and str(value).strip() != '':
                        if field == 'Program Memory (KB)':
                            metadata[meta_key] = f"{value} KB"
                        else:
                            metadata[meta_key] = str(value)
            
            doc = Document(page_content=content, metadata=metadata)
            documents.append(doc)
        
        if not documents:
            return [], "No valid microcontroller data found in Excel file."
        
        print(f"Successfully processed {len(documents)} microcontrollers")
        return documents, None
        
    except Exception as e:
        import traceback
        print("Excel processing error:")
        print(traceback.format_exc())
        return [], f"Error processing Excel file: {str(e)}"

def create_vector_db(documents: List[Document]) -> Optional[FAISS]:
    """Create FAISS vector database with error handling"""
    try:
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=2048,  # Larger chunk size for complete spec retention
            chunk_overlap=200,
            separators=["\n\n", "\n", ". ", ", ", " "]
        )
        
        splits = text_splitter.split_documents(documents)
        
        embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-mpnet-base-v2"
        )
        
        return FAISS.from_documents(splits, embeddings)
        
    except Exception as e:
        print(f"Error creating vector database: {str(e)}")
        return None

def initialize_llm_chain(vector_db):
    """Initialize LLM chain with enhanced prompting"""
    try:
        llm = HuggingFaceEndpoint(
            repo_id=MODEL_NAME,
            huggingfacehub_api_token=api_token,
            temperature=0.3,
            max_new_tokens=2048,
            top_k=5,
            repetition_penalty=1.1
        )
        
        memory = ConversationBufferMemory(
            memory_key="chat_history",
            output_key='answer',
            return_messages=True
        )
        
        retriever = vector_db.as_retriever(
            search_type="mmr",
            search_kwargs={
                "k": 5,
                "fetch_k": 8,
                "lambda_mult": 0.7
            }
        )

        qa_prompt = QA_PROMPT.partial(system_message=SYSTEM_MESSAGE)
        
        chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=retriever,
            memory=memory,
            return_source_documents=True,
            condense_question_prompt=CONDENSE_QUESTION_PROMPT,
            combine_docs_chain_kwargs={'prompt': qa_prompt}
        )
        
        return chain
        
    except Exception as e:
        print(f"Error initializing LLM chain: {str(e)}")
        return None

def format_mc_response(source_doc: Document) -> str:
    """Format microcontroller source documents for display with robust metadata handling"""
    try:
        if source_doc.metadata.get('source') == 'excel':
            # Get metadata with default values for missing fields
            product_title = source_doc.metadata.get('product_title', 'N/A')
            cpu = source_doc.metadata.get('cpu', 'Not specified')
            memory = source_doc.metadata.get('memory', 'Not specified')
            
            formatted_response = (
                f"Product: {product_title}\n"
                f"CPU: {cpu}\n"
                f"Memory: {memory}\n\n"
                f"Specifications:\n{source_doc.page_content}"
            )
            return formatted_response
        return source_doc.page_content
        
    except Exception as e:
        # Fallback to returning just the page content if there's any error
        print(f"Error formatting response: {str(e)}")
        return source_doc.page_content

def process_query(qa_chain, message: str, history: List) -> Tuple[str, List[str]]:
    """Process user query with enhanced context handling"""
    try:
        # Add requirement analysis to user query
        enhanced_query = f"""Analyze the following microcontroller requirements and provide detailed recommendations:

        User Requirements: {message}

        Please consider:
        1. Core specifications and performance requirements
        2. Memory requirements and constraints
        3. Communication interfaces needed
        4. Peripheral requirements
        5. Power and operating conditions
        6. Physical and environmental constraints

        Provide a detailed comparison of the best matching microcontrollers."""
        
        response = qa_chain({
            "question": enhanced_query,
            "chat_history": [(hist[0], hist[1]) for hist in history]
        })
        
        sources = response["source_documents"][:3]
        source_contents = [format_mc_response(source) for source in sources]
        
        return response["answer"], source_contents
        
    except Exception as e:
        return f"Error processing query: {str(e)}", []


def create_interface():
    """Create a Gradio interface with improved horizontal alignment and block sizes."""
    with gr.Blocks(css="""
        #main-title { 
            color: #00509e; 
            font-family: 'Arial', sans-serif; 
            text-align: center; 
            margin-bottom: 20px; 
        }
        #description { 
            color: #333; 
            font-family: 'Arial', sans-serif; 
            text-align: center; 
            margin-bottom: 30px; 
        }
        #initialize-btn { 
            background-color: #00509e; 
            color: white; 
            border: none; 
            padding: 5px 15px; 
            font-size: 14px; 
        }
        #initialize-btn:hover { 
            background-color: #003f7f; 
        }
        .gradio-row { 
            margin-bottom: 20px; 
        }
    """) as demo:
        # Title and description
        gr.HTML("<h1 id='main-title'>Microcontroller Selection Assistant</h1>")
        gr.HTML("<p id='description'>Select a sample file or upload your database. Then describe your requirements for tailored recommendations.</p>")
        
        # File selection section (sample and upload)
        with gr.Row(elem_id="file-section", equal_height=True):
            with gr.Column(scale=1):
                sample_file = gr.Dropdown(
                    label="Sample Files",
                    choices=["test_data.xlsx"],  
                    value="test_data.xlsx"
                )
            with gr.Column(scale=1):
                excel_file = gr.File(
                    label="Upload Microcontroller Database (Excel)",
                    file_types=[".xlsx", ".xls"],
                )
        
        # Initialization button and status
        with gr.Row(equal_height=True):
            initialize_btn = gr.Button("Initialize System", elem_id="initialize-btn")
            status = gr.Textbox(label="Status", value="Not initialized", interactive=False)
        
        # Chat section
        with gr.Row(equal_height=True):
            chatbot = gr.Chatbot(label="Chat", height=400)
        
        # Query input and buttons
        with gr.Row(equal_height=True):
            query = gr.Textbox(
                placeholder="Describe your microcontroller requirements (e.g., '32-bit MCU with USB support and 256KB flash memory')",
                label="Query",
                lines=3
            )
        
        with gr.Row(equal_height=True):
            submit_btn = gr.Button("Submit Query")
            clear_btn = gr.Button("Clear Chat")
        
        # State handlers
        vector_db_state = gr.State()
        qa_chain_state = gr.State()
        
        def init_system(file, sample):
            if not file and not sample:
                return None, None, "Please upload an Excel file or select a sample."
            
            file_path = file.name if file else sample
            
            docs, error = process_mc_excel(file_path)  # Pass Excel file path here
            if error:
                return None, None, error
            
            vector_db = create_vector_db(docs)
            if not vector_db:
                return None, None, "Failed to create vector database."
            
            qa_chain = initialize_llm_chain(vector_db)
            if not qa_chain:
                return None, None, "Failed to initialize LLM chain."
            
            return vector_db, qa_chain, "System initialized successfully!"
        
        def handle_query(qa_chain, message, history):
            if qa_chain is None:
                return history + [("Error", "Please initialize the system first.")], ""
            
            answer, sources = process_query(qa_chain, message, history)
            
            # Include sources in the answer
            if sources:
                answer += "\n\nRelevant Products:\n" + "\n\n".join(sources)
            
            return history + [(message, answer)], ""
        
        # Button actions
        initialize_btn.click(
            init_system,
            inputs=[excel_file, sample_file],
            outputs=[vector_db_state, qa_chain_state, status]
        )
        
        submit_btn.click(
            handle_query,
            inputs=[qa_chain_state, query, chatbot],
            outputs=[chatbot, query]
        )
        
        clear_btn.click(
            lambda: ([], ""),
            inputs=[],
            outputs=[chatbot, query]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(debug=True)