Upload 3 files
Browse files- app.py +557 -0
- requirements.txt +14 -0
- test_data.xlsx +0 -0
app.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from typing import List, Dict, Tuple, Optional
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.docstore.document import Document
|
10 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
import os
|
14 |
+
|
15 |
+
# Configuration
|
16 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
17 |
+
api_token = os.getenv("HF_TOKEN")
|
18 |
+
|
19 |
+
# Define system message for consistent LLM behavior
|
20 |
+
SYSTEM_MESSAGE = """You are a microcontroller selection expert assistant. Your task is to:
|
21 |
+
1. Analyze user requirements carefully
|
22 |
+
2. Compare available microcontrollers based on ALL provided specifications
|
23 |
+
3. Recommend the best matches with detailed explanations
|
24 |
+
4. Consider trade-offs between different features
|
25 |
+
5. Highlight any potential concerns or limitations
|
26 |
+
|
27 |
+
When making recommendations:
|
28 |
+
- Always mention specific model numbers and their key features
|
29 |
+
- Explain why each recommendation matches the requirements
|
30 |
+
- Compare pros and cons between recommendations
|
31 |
+
- Note any missing specifications that might be important"""
|
32 |
+
|
33 |
+
# Custom prompt templates
|
34 |
+
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template("""
|
35 |
+
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question that captures all relevant context from the conversation.
|
36 |
+
|
37 |
+
Chat History:
|
38 |
+
{chat_history}
|
39 |
+
|
40 |
+
Follow Up Input: {question}
|
41 |
+
|
42 |
+
Standalone question:""")
|
43 |
+
|
44 |
+
QA_PROMPT = PromptTemplate.from_template("""
|
45 |
+
{system_message}
|
46 |
+
|
47 |
+
Context information from microcontroller database:
|
48 |
+
{context}
|
49 |
+
|
50 |
+
User Query: {question}
|
51 |
+
|
52 |
+
Provide a detailed response following these steps:
|
53 |
+
1. Analyze Requirements: Clearly state the key requirements from the query
|
54 |
+
2. Matching Products: List and compare the best matching microcontrollers
|
55 |
+
3. Feature Analysis: Detail how each recommended product meets the requirements
|
56 |
+
4. Trade-offs: Explain any compromises or trade-offs
|
57 |
+
5. Additional Considerations: Mention any important factors the user should consider
|
58 |
+
|
59 |
+
Response:""")
|
60 |
+
|
61 |
+
def validate_excel_format(df: pd.DataFrame) -> bool:
|
62 |
+
"""Validate if Excel file has required specifications as columns"""
|
63 |
+
expected_specs = [
|
64 |
+
'Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu',
|
65 |
+
'Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)',
|
66 |
+
'Lead Count (#)', 'Supply Voltage (V)', 'Operating Freq (Max) (MHz)',
|
67 |
+
'RTC', 'LVD or PVD', 'DMA', 'I/O Ports', 'Timer', 'ADC', 'DAC',
|
68 |
+
'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN',
|
69 |
+
'Human machine interface', 'pkg.Type', 'Temp.Range'
|
70 |
+
]
|
71 |
+
|
72 |
+
# Check if at least the essential columns exist
|
73 |
+
essential_specs = ['Product ID', 'Product Title', 'Bit Size', 'cpu']
|
74 |
+
missing_essential = [col for col in essential_specs if col not in df.columns]
|
75 |
+
|
76 |
+
if missing_essential:
|
77 |
+
print(f"Missing essential columns: {missing_essential}")
|
78 |
+
return False
|
79 |
+
|
80 |
+
# Print found and missing columns for debugging
|
81 |
+
found_specs = [col for col in expected_specs if col in df.columns]
|
82 |
+
missing_specs = [col for col in expected_specs if col not in df.columns]
|
83 |
+
|
84 |
+
print("Found specifications:", found_specs)
|
85 |
+
print("Missing specifications:", missing_specs)
|
86 |
+
|
87 |
+
return True
|
88 |
+
|
89 |
+
|
90 |
+
def normalize_column_name(col_name: str) -> str:
|
91 |
+
"""Normalize column names to handle different variations"""
|
92 |
+
# Convert to lowercase and remove special characters
|
93 |
+
normalized = str(col_name).lower().strip()
|
94 |
+
normalized = ''.join(c for c in normalized if c.isalnum() or c.isspace())
|
95 |
+
|
96 |
+
# Common variations mapping
|
97 |
+
variations = {
|
98 |
+
'productid': 'Product ID',
|
99 |
+
'producttitle': 'Product Title',
|
100 |
+
'programmemorykb': 'Program Memory (KB)',
|
101 |
+
'programmemory': 'Program Memory (KB)',
|
102 |
+
'flashmemory': 'Program Memory (KB)',
|
103 |
+
'dataflashkb': 'Data Flash (KB)',
|
104 |
+
'dataflash': 'Data Flash (KB)',
|
105 |
+
'ramkb': 'RAM (KB)',
|
106 |
+
'ram': 'RAM (KB)',
|
107 |
+
'bitsize': 'Bit Size',
|
108 |
+
'cpucore': 'cpu',
|
109 |
+
'processor': 'cpu',
|
110 |
+
'supplyvoltage': 'Supply Voltage (V)',
|
111 |
+
'voltage': 'Supply Voltage (V)',
|
112 |
+
'operatingfreq': 'Operating Freq (Max) (MHz)',
|
113 |
+
'frequency': 'Operating Freq (Max) (MHz)',
|
114 |
+
'maxfreq': 'Operating Freq (Max) (MHz)',
|
115 |
+
'leadcount': 'Lead Count (#)',
|
116 |
+
'pins': 'Lead Count (#)',
|
117 |
+
'pincount': 'Lead Count (#)',
|
118 |
+
'interface': 'I/O Ports',
|
119 |
+
'ioports': 'I/O Ports',
|
120 |
+
'packagetype': 'pkg.Type',
|
121 |
+
'package': 'pkg.Type',
|
122 |
+
'temprange': 'Temp.Range',
|
123 |
+
'temperature': 'Temp.Range',
|
124 |
+
'humanmachineinterface': 'Human machine interface',
|
125 |
+
'hmi': 'Human machine interface'
|
126 |
+
}
|
127 |
+
|
128 |
+
# Return original if no mapping found
|
129 |
+
return variations.get(normalized.replace(' ', ''), col_name)
|
130 |
+
|
131 |
+
def validate_and_map_columns(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, str]]:
|
132 |
+
"""Validate and map Excel columns to standard names"""
|
133 |
+
# Create mapping of found columns
|
134 |
+
column_mapping = {}
|
135 |
+
new_columns = []
|
136 |
+
|
137 |
+
for col in df.columns:
|
138 |
+
normalized_name = normalize_column_name(col)
|
139 |
+
column_mapping[col] = normalized_name
|
140 |
+
new_columns.append(normalized_name)
|
141 |
+
|
142 |
+
# Rename columns in DataFrame
|
143 |
+
df.columns = new_columns
|
144 |
+
|
145 |
+
# Print found specifications for debugging
|
146 |
+
print("Found specifications:", new_columns)
|
147 |
+
|
148 |
+
return df, column_mapping
|
149 |
+
|
150 |
+
|
151 |
+
def clean_excel_data(df: pd.DataFrame) -> pd.DataFrame:
|
152 |
+
"""Clean and prepare Excel data with flexible handling"""
|
153 |
+
# Replace various forms of empty/NA values
|
154 |
+
df = df.replace([np.nan, 'N/A', 'NA', '-', 'None', 'none', 'nil', 'NIL'], '')
|
155 |
+
|
156 |
+
# Numeric columns with their units
|
157 |
+
numeric_specs = {
|
158 |
+
'Program Memory (KB)': 'KB',
|
159 |
+
'Data Flash (KB)': 'KB',
|
160 |
+
'RAM (KB)': 'KB',
|
161 |
+
'Lead Count (#)': '',
|
162 |
+
'Supply Voltage (V)': 'V',
|
163 |
+
'Operating Freq (Max) (MHz)': 'MHz'
|
164 |
+
}
|
165 |
+
|
166 |
+
# Process each numeric column if it exists
|
167 |
+
for col, unit in numeric_specs.items():
|
168 |
+
if col in df.columns:
|
169 |
+
# Extract numeric values from string if needed
|
170 |
+
df[col] = df[col].astype(str).str.extract(r'(\d+\.?\d*)').astype(float)
|
171 |
+
|
172 |
+
# Clean boolean/feature columns
|
173 |
+
feature_cols = ['RTC', 'DMA', 'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN']
|
174 |
+
for col in feature_cols:
|
175 |
+
if col in df.columns:
|
176 |
+
df[col] = df[col].astype(str).str.lower()
|
177 |
+
# Map various positive indicators to 'Yes'
|
178 |
+
df[col] = df[col].apply(lambda x: 'Yes' if x in ['yes', 'y', '1', 'true', 'available', 'supported', '✓', '√'] else 'No')
|
179 |
+
|
180 |
+
return df
|
181 |
+
|
182 |
+
def process_mc_excel(excel_file: str) -> Tuple[List[Document], Optional[str]]:
|
183 |
+
"""Convert microcontroller Excel data to Document objects with flexible handling"""
|
184 |
+
try:
|
185 |
+
print(f"Reading Excel file: {excel_file}")
|
186 |
+
df = pd.read_excel(excel_file)
|
187 |
+
print(f"Excel file loaded. Shape: {df.shape}")
|
188 |
+
|
189 |
+
# Validate and map columns
|
190 |
+
df, column_mapping = validate_and_map_columns(df)
|
191 |
+
df = clean_excel_data(df)
|
192 |
+
|
193 |
+
# Define feature groups with optional fields
|
194 |
+
feature_groups = {
|
195 |
+
'core_specs': {
|
196 |
+
'title': 'Core Specifications',
|
197 |
+
'fields': ['Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu'],
|
198 |
+
'required': ['Product ID', 'Product Title'] # Minimum required fields
|
199 |
+
},
|
200 |
+
'memory': {
|
201 |
+
'title': 'Memory',
|
202 |
+
'fields': ['Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)'],
|
203 |
+
'required': []
|
204 |
+
},
|
205 |
+
'communication': {
|
206 |
+
'title': 'Communication Interfaces',
|
207 |
+
'fields': ['Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'],
|
208 |
+
'required': []
|
209 |
+
},
|
210 |
+
'peripherals': {
|
211 |
+
'title': 'Peripherals',
|
212 |
+
'fields': ['Timer', 'ADC', 'DAC', 'RTC', 'DMA'],
|
213 |
+
'required': []
|
214 |
+
},
|
215 |
+
'power': {
|
216 |
+
'title': 'Power and Performance',
|
217 |
+
'fields': ['Supply Voltage (V)', 'Operating Freq (Max) (MHz)', 'LVD or PVD'],
|
218 |
+
'required': []
|
219 |
+
},
|
220 |
+
'physical': {
|
221 |
+
'title': 'Physical Specifications',
|
222 |
+
'fields': ['Lead Count (#)', 'pkg.Type', 'Temp.Range'],
|
223 |
+
'required': []
|
224 |
+
},
|
225 |
+
'interface': {
|
226 |
+
'title': 'Interfaces',
|
227 |
+
'fields': ['I/O Ports', 'Human machine interface'],
|
228 |
+
'required': []
|
229 |
+
}
|
230 |
+
}
|
231 |
+
|
232 |
+
# Check for minimum required fields
|
233 |
+
required_fields = set()
|
234 |
+
for group in feature_groups.values():
|
235 |
+
required_fields.update(group['required'])
|
236 |
+
|
237 |
+
missing_required = [field for field in required_fields if field not in df.columns]
|
238 |
+
if missing_required:
|
239 |
+
return [], f"Missing essential columns: {', '.join(missing_required)}"
|
240 |
+
|
241 |
+
documents = []
|
242 |
+
for idx, row in df.iterrows():
|
243 |
+
content_parts = []
|
244 |
+
|
245 |
+
for group_name, group_info in feature_groups.items():
|
246 |
+
group_content = []
|
247 |
+
for field in group_info['fields']:
|
248 |
+
if field in df.columns and pd.notna(row.get(field)) and str(row.get(field)).strip() != '':
|
249 |
+
value = row[field]
|
250 |
+
if isinstance(value, (int, float)):
|
251 |
+
if 'KB' in field:
|
252 |
+
value = f"{value:g} KB"
|
253 |
+
elif 'MHz' in field:
|
254 |
+
value = f"{value:g} MHz"
|
255 |
+
elif 'V' in field:
|
256 |
+
value = f"{value:g}V"
|
257 |
+
else:
|
258 |
+
value = f"{value:g}"
|
259 |
+
group_content.append(f"{field}: {value}")
|
260 |
+
|
261 |
+
if group_content:
|
262 |
+
content_parts.append(f"{group_info['title']}:\n" + "\n".join(group_content))
|
263 |
+
|
264 |
+
# Create content string
|
265 |
+
content = "\n\n".join(content_parts)
|
266 |
+
|
267 |
+
# Create metadata with available fields
|
268 |
+
metadata = {
|
269 |
+
"source": "excel",
|
270 |
+
"row": idx,
|
271 |
+
"product_id": str(row.get('Product ID', '')),
|
272 |
+
"product_title": str(row.get('Product Title', '')),
|
273 |
+
}
|
274 |
+
|
275 |
+
# Add optional metadata if available
|
276 |
+
optional_metadata = {
|
277 |
+
"bit_size": "Bit Size",
|
278 |
+
"cpu": "cpu",
|
279 |
+
"memory": "Program Memory (KB)",
|
280 |
+
"interfaces": ["USB", "Ethernet", "CAN", "SPI", "I2C"]
|
281 |
+
}
|
282 |
+
|
283 |
+
for meta_key, field in optional_metadata.items():
|
284 |
+
if isinstance(field, list):
|
285 |
+
# Handle interface list
|
286 |
+
metadata[meta_key] = [intf for intf in field if intf in df.columns and row.get(intf) == 'Yes']
|
287 |
+
elif field in df.columns:
|
288 |
+
value = row.get(field)
|
289 |
+
if pd.notna(value) and str(value).strip() != '':
|
290 |
+
if field == 'Program Memory (KB)':
|
291 |
+
metadata[meta_key] = f"{value} KB"
|
292 |
+
else:
|
293 |
+
metadata[meta_key] = str(value)
|
294 |
+
|
295 |
+
doc = Document(page_content=content, metadata=metadata)
|
296 |
+
documents.append(doc)
|
297 |
+
|
298 |
+
if not documents:
|
299 |
+
return [], "No valid microcontroller data found in Excel file."
|
300 |
+
|
301 |
+
print(f"Successfully processed {len(documents)} microcontrollers")
|
302 |
+
return documents, None
|
303 |
+
|
304 |
+
except Exception as e:
|
305 |
+
import traceback
|
306 |
+
print("Excel processing error:")
|
307 |
+
print(traceback.format_exc())
|
308 |
+
return [], f"Error processing Excel file: {str(e)}"
|
309 |
+
|
310 |
+
def create_vector_db(documents: List[Document]) -> Optional[FAISS]:
|
311 |
+
"""Create FAISS vector database with error handling"""
|
312 |
+
try:
|
313 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
314 |
+
chunk_size=2048, # Larger chunk size for complete spec retention
|
315 |
+
chunk_overlap=200,
|
316 |
+
separators=["\n\n", "\n", ". ", ", ", " "]
|
317 |
+
)
|
318 |
+
|
319 |
+
splits = text_splitter.split_documents(documents)
|
320 |
+
|
321 |
+
embeddings = HuggingFaceEmbeddings(
|
322 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
323 |
+
)
|
324 |
+
|
325 |
+
return FAISS.from_documents(splits, embeddings)
|
326 |
+
|
327 |
+
except Exception as e:
|
328 |
+
print(f"Error creating vector database: {str(e)}")
|
329 |
+
return None
|
330 |
+
|
331 |
+
def initialize_llm_chain(vector_db):
|
332 |
+
"""Initialize LLM chain with enhanced prompting"""
|
333 |
+
try:
|
334 |
+
llm = HuggingFaceEndpoint(
|
335 |
+
repo_id=MODEL_NAME,
|
336 |
+
huggingfacehub_api_token=api_token,
|
337 |
+
temperature=0.3,
|
338 |
+
max_new_tokens=2048,
|
339 |
+
top_k=5,
|
340 |
+
repetition_penalty=1.1
|
341 |
+
)
|
342 |
+
|
343 |
+
memory = ConversationBufferMemory(
|
344 |
+
memory_key="chat_history",
|
345 |
+
output_key='answer',
|
346 |
+
return_messages=True
|
347 |
+
)
|
348 |
+
|
349 |
+
retriever = vector_db.as_retriever(
|
350 |
+
search_type="mmr",
|
351 |
+
search_kwargs={
|
352 |
+
"k": 5,
|
353 |
+
"fetch_k": 8,
|
354 |
+
"lambda_mult": 0.7
|
355 |
+
}
|
356 |
+
)
|
357 |
+
|
358 |
+
qa_prompt = QA_PROMPT.partial(system_message=SYSTEM_MESSAGE)
|
359 |
+
|
360 |
+
chain = ConversationalRetrievalChain.from_llm(
|
361 |
+
llm=llm,
|
362 |
+
retriever=retriever,
|
363 |
+
memory=memory,
|
364 |
+
return_source_documents=True,
|
365 |
+
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
|
366 |
+
combine_docs_chain_kwargs={'prompt': qa_prompt}
|
367 |
+
)
|
368 |
+
|
369 |
+
return chain
|
370 |
+
|
371 |
+
except Exception as e:
|
372 |
+
print(f"Error initializing LLM chain: {str(e)}")
|
373 |
+
return None
|
374 |
+
|
375 |
+
def format_mc_response(source_doc: Document) -> str:
|
376 |
+
"""Format microcontroller source documents for display with robust metadata handling"""
|
377 |
+
try:
|
378 |
+
if source_doc.metadata.get('source') == 'excel':
|
379 |
+
# Get metadata with default values for missing fields
|
380 |
+
product_title = source_doc.metadata.get('product_title', 'N/A')
|
381 |
+
cpu = source_doc.metadata.get('cpu', 'Not specified')
|
382 |
+
memory = source_doc.metadata.get('memory', 'Not specified')
|
383 |
+
|
384 |
+
formatted_response = (
|
385 |
+
f"Product: {product_title}\n"
|
386 |
+
f"CPU: {cpu}\n"
|
387 |
+
f"Memory: {memory}\n\n"
|
388 |
+
f"Specifications:\n{source_doc.page_content}"
|
389 |
+
)
|
390 |
+
return formatted_response
|
391 |
+
return source_doc.page_content
|
392 |
+
|
393 |
+
except Exception as e:
|
394 |
+
# Fallback to returning just the page content if there's any error
|
395 |
+
print(f"Error formatting response: {str(e)}")
|
396 |
+
return source_doc.page_content
|
397 |
+
|
398 |
+
def process_query(qa_chain, message: str, history: List) -> Tuple[str, List[str]]:
|
399 |
+
"""Process user query with enhanced context handling"""
|
400 |
+
try:
|
401 |
+
# Add requirement analysis to user query
|
402 |
+
enhanced_query = f"""Analyze the following microcontroller requirements and provide detailed recommendations:
|
403 |
+
|
404 |
+
User Requirements: {message}
|
405 |
+
|
406 |
+
Please consider:
|
407 |
+
1. Core specifications and performance requirements
|
408 |
+
2. Memory requirements and constraints
|
409 |
+
3. Communication interfaces needed
|
410 |
+
4. Peripheral requirements
|
411 |
+
5. Power and operating conditions
|
412 |
+
6. Physical and environmental constraints
|
413 |
+
|
414 |
+
Provide a detailed comparison of the best matching microcontrollers."""
|
415 |
+
|
416 |
+
response = qa_chain({
|
417 |
+
"question": enhanced_query,
|
418 |
+
"chat_history": [(hist[0], hist[1]) for hist in history]
|
419 |
+
})
|
420 |
+
|
421 |
+
sources = response["source_documents"][:3]
|
422 |
+
source_contents = [format_mc_response(source) for source in sources]
|
423 |
+
|
424 |
+
return response["answer"], source_contents
|
425 |
+
|
426 |
+
except Exception as e:
|
427 |
+
return f"Error processing query: {str(e)}", []
|
428 |
+
|
429 |
+
|
430 |
+
def create_interface():
|
431 |
+
"""Create a Gradio interface with improved horizontal alignment and block sizes."""
|
432 |
+
with gr.Blocks(css="""
|
433 |
+
#main-title {
|
434 |
+
color: #00509e;
|
435 |
+
font-family: 'Arial', sans-serif;
|
436 |
+
text-align: center;
|
437 |
+
margin-bottom: 20px;
|
438 |
+
}
|
439 |
+
#description {
|
440 |
+
color: #333;
|
441 |
+
font-family: 'Arial', sans-serif;
|
442 |
+
text-align: center;
|
443 |
+
margin-bottom: 30px;
|
444 |
+
}
|
445 |
+
#initialize-btn {
|
446 |
+
background-color: #00509e;
|
447 |
+
color: white;
|
448 |
+
border: none;
|
449 |
+
padding: 5px 15px;
|
450 |
+
font-size: 14px;
|
451 |
+
}
|
452 |
+
#initialize-btn:hover {
|
453 |
+
background-color: #003f7f;
|
454 |
+
}
|
455 |
+
.gradio-row {
|
456 |
+
margin-bottom: 20px;
|
457 |
+
}
|
458 |
+
""") as demo:
|
459 |
+
# Title and description
|
460 |
+
gr.HTML("<h1 id='main-title'>Microcontroller Selection Assistant</h1>")
|
461 |
+
gr.HTML("<p id='description'>Select a sample file or upload your database. Then describe your requirements for tailored recommendations.</p>")
|
462 |
+
|
463 |
+
# File selection section (sample and upload)
|
464 |
+
with gr.Row(elem_id="file-section", equal_height=True):
|
465 |
+
with gr.Column(scale=1):
|
466 |
+
sample_file = gr.Dropdown(
|
467 |
+
label="Sample Files",
|
468 |
+
choices=["test_data.xlsx"],
|
469 |
+
value="test_data.xlsx"
|
470 |
+
)
|
471 |
+
with gr.Column(scale=1):
|
472 |
+
excel_file = gr.File(
|
473 |
+
label="Upload Microcontroller Database (Excel)",
|
474 |
+
file_types=[".xlsx", ".xls"],
|
475 |
+
)
|
476 |
+
|
477 |
+
# Initialization button and status
|
478 |
+
with gr.Row(equal_height=True):
|
479 |
+
initialize_btn = gr.Button("Initialize System", elem_id="initialize-btn")
|
480 |
+
status = gr.Textbox(label="Status", value="Not initialized", interactive=False)
|
481 |
+
|
482 |
+
# Chat section
|
483 |
+
with gr.Row(equal_height=True):
|
484 |
+
chatbot = gr.Chatbot(label="Chat", height=400)
|
485 |
+
|
486 |
+
# Query input and buttons
|
487 |
+
with gr.Row(equal_height=True):
|
488 |
+
query = gr.Textbox(
|
489 |
+
placeholder="Describe your microcontroller requirements (e.g., '32-bit MCU with USB support and 256KB flash memory')",
|
490 |
+
label="Query",
|
491 |
+
lines=3
|
492 |
+
)
|
493 |
+
|
494 |
+
with gr.Row(equal_height=True):
|
495 |
+
submit_btn = gr.Button("Submit Query")
|
496 |
+
clear_btn = gr.Button("Clear Chat")
|
497 |
+
|
498 |
+
# State handlers
|
499 |
+
vector_db_state = gr.State()
|
500 |
+
qa_chain_state = gr.State()
|
501 |
+
|
502 |
+
def init_system(file, sample):
|
503 |
+
if not file and not sample:
|
504 |
+
return None, None, "Please upload an Excel file or select a sample."
|
505 |
+
|
506 |
+
file_path = file.name if file else sample
|
507 |
+
|
508 |
+
docs, error = process_mc_excel(file_path) # Pass Excel file path here
|
509 |
+
if error:
|
510 |
+
return None, None, error
|
511 |
+
|
512 |
+
vector_db = create_vector_db(docs)
|
513 |
+
if not vector_db:
|
514 |
+
return None, None, "Failed to create vector database."
|
515 |
+
|
516 |
+
qa_chain = initialize_llm_chain(vector_db)
|
517 |
+
if not qa_chain:
|
518 |
+
return None, None, "Failed to initialize LLM chain."
|
519 |
+
|
520 |
+
return vector_db, qa_chain, "System initialized successfully!"
|
521 |
+
|
522 |
+
def handle_query(qa_chain, message, history):
|
523 |
+
if qa_chain is None:
|
524 |
+
return history + [("Error", "Please initialize the system first.")], ""
|
525 |
+
|
526 |
+
answer, sources = process_query(qa_chain, message, history)
|
527 |
+
|
528 |
+
# Include sources in the answer
|
529 |
+
if sources:
|
530 |
+
answer += "\n\nRelevant Products:\n" + "\n\n".join(sources)
|
531 |
+
|
532 |
+
return history + [(message, answer)], ""
|
533 |
+
|
534 |
+
# Button actions
|
535 |
+
initialize_btn.click(
|
536 |
+
init_system,
|
537 |
+
inputs=[excel_file, sample_file],
|
538 |
+
outputs=[vector_db_state, qa_chain_state, status]
|
539 |
+
)
|
540 |
+
|
541 |
+
submit_btn.click(
|
542 |
+
handle_query,
|
543 |
+
inputs=[qa_chain_state, query, chatbot],
|
544 |
+
outputs=[chatbot, query]
|
545 |
+
)
|
546 |
+
|
547 |
+
clear_btn.click(
|
548 |
+
lambda: ([], ""),
|
549 |
+
inputs=[],
|
550 |
+
outputs=[chatbot, query]
|
551 |
+
)
|
552 |
+
|
553 |
+
return demo
|
554 |
+
|
555 |
+
if __name__ == "__main__":
|
556 |
+
demo = create_interface()
|
557 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
+
langchain==0.3.7
|
5 |
+
langchain-community
|
6 |
+
tqdm
|
7 |
+
accelerate
|
8 |
+
pypdf
|
9 |
+
faiss-gpu
|
10 |
+
ragas
|
11 |
+
nltk
|
12 |
+
langchain_huggingface
|
13 |
+
qdrant-client
|
14 |
+
chromadb
|
test_data.xlsx
ADDED
Binary file (14.9 kB). View file
|
|