Spaces:
Sleeping
Sleeping
File size: 5,758 Bytes
686b9bf 55f4e8e f339bab 5f52293 69f2e98 67b1882 07b7bcb b790511 4265519 07b7bcb 67b1882 b1f3cf3 07b7bcb b1f3cf3 686b9bf b1f3cf3 69f2e98 aeda8f9 c974ae6 5f52293 b790511 67b1882 b790511 aeda8f9 b790511 aeda8f9 b790511 aeda8f9 67b1882 b1f3cf3 aeda8f9 b1f3cf3 aeda8f9 b1f3cf3 aeda8f9 b1f3cf3 67b1882 b1f3cf3 55f4e8e 686b9bf 5f52293 686b9bf 281c481 69f2e98 4265519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import torch
import spaces
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import os
import logging
from unsloth import FastLanguageModel
import subprocess
loler=gr.SimpleCSVLogger()
# Set up logging to file
log_file_path = "app.log" # Name of your log file
logging.basicConfig(
filename=log_file_path,
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger = logging.getLogger(__name__)
# Get environment variable for Hugging Face access
READ_HF = os.environ.get("read_hf")
# Alpaca prompt template
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
# Inventory management instructions
string = '''
You are an AI assistant tasked with managing inventory based on user instructions. You must meticulously analyze each user request to determine the appropriate action and execute it with the correct parameters.
**Here's your step-by-step thought process:**
1. **Identify the Function:** Carefully examine the user's input to determine the primary function they want to perform. The available functions are:
- `transaction`: Record a new item transaction.
- `last n days transactions`: Retrieve transaction records within a specific timeframe.
- `view inventory`: View inventory details for a specific category and risk level.
- `generate report`: Generate an inventory report.
2. **Extract Parameters:** Once you've identified the function, carefully extract the necessary parameters from the user's input. Each function requires specific parameters:
**`transaction`:**
- `ItemName`: (string) **Must be an exact match from the provided Item List.**
- `ItemQt`: (integer) The quantity of the item.
- `Type`: (string) "sale", "purchase", or "return".
**`last n days transactions`:**
- `ItemCategory`: (string) **Must be from the provided Item Category List.**
- `Duration`: (integer) Number of days (convert weeks, months, years to days).
**`view inventory`:**
- `ItemCategory`: (string) **Must be from the provided Item Category List.**
- `RiskType`: (string) "overstock", "understock", or "Null" (if risk inventory is not asked), or "All" for both overstock and understock.
**`generate report`:**
- `ItemCategory`: (string) **Must be from the provided Item Category List.**
- `Duration`: (integer) Number of days (convert weeks, months, years to days).
- `ReportType`: (string): "profit", "revenue", "inventory", or "Null" (for all reports).
3. **Validate Inputs:** Before proceeding, validate the extracted parameters:
- **ItemName:** Ensure the `ItemName` is an exact match from the provided Item List.
- **ItemCategory:** Ensure the `ItemCategory` is from the provided Category List.
- **Data Types:** Verify that all parameters are of the correct data type (string or integer).
4. **Output in JSON:** Always format your response as a JSON object.
**Additional Notes:**
- Pay close attention to the case and spelling of function names and parameters.
Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Grains & Staples", "Personal Care", "Other"]
'''
from unsloth import FastLanguageModel
@spaces.GPU()
def chunk_it(inventory_list, user_input_text):
# Check for CUDA and NVIDIA-related errors
try:
# Check for GPU devices
device_count = torch.cuda.device_count()
logger.info(f"Number of GPU devices: {device_count}")
if device_count == 0:
raise RuntimeError("No GPU devices found.")
# Check CUDA version using subprocess
process = subprocess.run(['nvcc', '--version'], capture_output=True, text=True)
cuda_version = process.stdout.strip()
logger.info(f"CUDA version: {cuda_version}")
if 'not found' in cuda_version.lower():
raise RuntimeError("CUDA not found.")
# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
max_seq_length = 2048,
dtype = torch.bfloat16,
load_in_4bit = True,
token = READ_HF
)
logger.info("Model and tokenizer loaded.")
# Format the prompt
formatted_prompt = alpaca_prompt.format(
string + inventory_list,
user_input_text,
"",
)
logger.debug(f"Formatted prompt: {formatted_prompt}")
# Tokenize the input
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
logger.debug(f"Tokenized inputs: {inputs}")
# Generate output
outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True)
logger.info("Output generated.")
# Decode output
reply = tokenizer.batch_decode(outputs, skip_special_tokens=True)
logger.debug(f"Decoded output: {reply}")
logger.debug(f"Final reply: {reply}")
return reply
except Exception as e:
logger.error(f"Error loading model or CUDA issues: {e}")
return "There seems to be an issue with CUDA or the model. Please check the Hugging Face Spaces environment."
# Interface for inputs
iface = gr.Interface(
fn=chunk_it,
inputs=[
gr.Textbox(label="user_input_text", lines=3),
gr.Textbox(label="inventory_list", lines=5)
],
outputs=gr.Textbox(label="output", lines=23),
title="Testing",
flagging_callback=SimpleCSVLogger()
) |