VanguardAI commited on
Commit
b790511
·
verified ·
1 Parent(s): 006d5fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -4
app.py CHANGED
@@ -6,6 +6,8 @@ import gradio as gr
6
  import os
7
  import logging
8
  from unsloth import FastLanguageModel
 
 
9
  logging.basicConfig(
10
  level=logging.DEBUG, # Set the logging level to DEBUG to capture all messages
11
  format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
@@ -72,11 +74,22 @@ Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Gr
72
  '''
73
  @spaces.GPU()
74
  def chunk_it(inventory_list, user_input_text):
75
- num_elements = (5 * 1024 * 1024) // 4
76
- tensor = torch.randn(num_elements, dtype=torch.float32)
77
- tensor_gpu = tensor.to('cuda')
78
- logger.info("Loading model and tokenizer...")
79
  try:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  model, tokenizer = FastLanguageModel.from_pretrained(
81
  model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
82
  max_seq_length = 2048,
 
6
  import os
7
  import logging
8
  from unsloth import FastLanguageModel
9
+ import subprocess
10
+
11
  logging.basicConfig(
12
  level=logging.DEBUG, # Set the logging level to DEBUG to capture all messages
13
  format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
 
74
  '''
75
  @spaces.GPU()
76
  def chunk_it(inventory_list, user_input_text):
77
+ # Check for CUDA and NVIDIA-related errors
 
 
 
78
  try:
79
+ # Check for GPU devices
80
+ device_count = torch.cuda.device_count()
81
+ logger.info(f"Number of GPU devices: {device_count}")
82
+ if device_count == 0:
83
+ raise RuntimeError("No GPU devices found.") # Raise an error if no GPUs are detected
84
+
85
+ # Check CUDA version using subprocess
86
+ process = subprocess.run(['nvcc', '--version'], capture_output=True, text=True)
87
+ cuda_version = process.stdout.strip()
88
+ logger.info(f"CUDA version: {cuda_version}")
89
+ if 'not found' in cuda_version.lower():
90
+ raise RuntimeError("CUDA not found.") # Raise an error if CUDA is not found
91
+
92
+ # Load model and tokenizer (your original code)
93
  model, tokenizer = FastLanguageModel.from_pretrained(
94
  model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
95
  max_seq_length = 2048,