Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,20 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
import logging
|
8 |
-
|
9 |
import subprocess
|
10 |
|
11 |
-
# Set up logging
|
12 |
-
logging.basicConfig(
|
13 |
-
level=logging.DEBUG, # Set the logging level to DEBUG to capture all messages
|
14 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
15 |
-
handlers=[
|
16 |
-
logging.StreamHandler() # Logs will be output to the console
|
17 |
-
]
|
18 |
-
)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
-
logger.
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Get environment variable for Hugging Face access
|
23 |
-
READ_HF = os.environ
|
24 |
-
|
25 |
# Alpaca prompt template
|
26 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
27 |
|
@@ -79,7 +76,7 @@ You are an AI assistant tasked with managing inventory based on user instruction
|
|
79 |
|
80 |
Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Grains & Staples", "Personal Care", "Other"]
|
81 |
'''
|
82 |
-
|
83 |
@spaces.GPU()
|
84 |
def chunk_it(inventory_list, user_input_text):
|
85 |
# Check for CUDA and NVIDIA-related errors
|
@@ -88,16 +85,16 @@ def chunk_it(inventory_list, user_input_text):
|
|
88 |
device_count = torch.cuda.device_count()
|
89 |
logger.info(f"Number of GPU devices: {device_count}")
|
90 |
if device_count == 0:
|
91 |
-
raise RuntimeError("No GPU devices found.")
|
92 |
|
93 |
# Check CUDA version using subprocess
|
94 |
process = subprocess.run(['nvcc', '--version'], capture_output=True, text=True)
|
95 |
cuda_version = process.stdout.strip()
|
96 |
logger.info(f"CUDA version: {cuda_version}")
|
97 |
if 'not found' in cuda_version.lower():
|
98 |
-
raise RuntimeError("CUDA not found.")
|
99 |
|
100 |
-
# Load model and tokenizer
|
101 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
102 |
model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
|
103 |
max_seq_length = 2048,
|
@@ -107,33 +104,26 @@ def chunk_it(inventory_list, user_input_text):
|
|
107 |
)
|
108 |
logger.info("Model and tokenizer loaded.")
|
109 |
|
110 |
-
#
|
111 |
-
|
112 |
formatted_prompt = alpaca_prompt.format(
|
113 |
-
string + inventory_list,
|
114 |
-
user_input_text,
|
115 |
-
"",
|
116 |
)
|
117 |
logger.debug(f"Formatted prompt: {formatted_prompt}")
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
try:
|
132 |
-
reply = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
133 |
-
logger.debug(f"Decoded output: {reply}")
|
134 |
-
except Exception as e:
|
135 |
-
logger.error(f"Failed to decode output: {e}")
|
136 |
-
raise
|
137 |
logger.debug(f"Final reply: {reply}")
|
138 |
return reply
|
139 |
|
@@ -141,7 +131,6 @@ def chunk_it(inventory_list, user_input_text):
|
|
141 |
logger.error(f"Error loading model or CUDA issues: {e}")
|
142 |
return "There seems to be an issue with CUDA or the model. Please check the Hugging Face Spaces environment."
|
143 |
|
144 |
-
|
145 |
# Interface for inputs
|
146 |
iface = gr.Interface(
|
147 |
fn=chunk_it,
|
@@ -153,17 +142,4 @@ iface = gr.Interface(
|
|
153 |
title="Testing",
|
154 |
)
|
155 |
|
156 |
-
|
157 |
-
logger = logging.getLogger(__name__)
|
158 |
-
logger.setLevel(logging.DEBUG) # Set the logging level
|
159 |
-
ch = logging.StreamHandler(gr.Log()) # Create a StreamHandler and send logs to gr.Log
|
160 |
-
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
161 |
-
ch.setFormatter(formatter)
|
162 |
-
logger.addHandler(ch)
|
163 |
-
|
164 |
-
logger.info("Launching Gradio interface...")
|
165 |
-
try:
|
166 |
-
iface.launch(inline=False)
|
167 |
-
logger.info("Gradio interface launched.")
|
168 |
-
except Exception as e:
|
169 |
-
logger.error(f"Failed to launch Gradio interface: {e}")
|
|
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
import logging
|
8 |
+
|
9 |
import subprocess
|
10 |
|
11 |
+
# Set up logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
logger = logging.getLogger(__name__)
|
13 |
+
logger.setLevel(logging.DEBUG) # Set the logging level
|
14 |
+
ch = logging.StreamHandler(gr.Log()) # Create a StreamHandler and send logs to gr.Log
|
15 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
16 |
+
ch.setFormatter(formatter)
|
17 |
+
logger.addHandler(ch)
|
18 |
|
19 |
# Get environment variable for Hugging Face access
|
20 |
+
READ_HF = os.environ.get("read_hf") #use .get to avoid error if variable doesn't exist
|
21 |
+
logger.info("Checking logger...")
|
22 |
# Alpaca prompt template
|
23 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
24 |
|
|
|
76 |
|
77 |
Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Grains & Staples", "Personal Care", "Other"]
|
78 |
'''
|
79 |
+
from unsloth import FastLanguageModel
|
80 |
@spaces.GPU()
|
81 |
def chunk_it(inventory_list, user_input_text):
|
82 |
# Check for CUDA and NVIDIA-related errors
|
|
|
85 |
device_count = torch.cuda.device_count()
|
86 |
logger.info(f"Number of GPU devices: {device_count}")
|
87 |
if device_count == 0:
|
88 |
+
raise RuntimeError("No GPU devices found.")
|
89 |
|
90 |
# Check CUDA version using subprocess
|
91 |
process = subprocess.run(['nvcc', '--version'], capture_output=True, text=True)
|
92 |
cuda_version = process.stdout.strip()
|
93 |
logger.info(f"CUDA version: {cuda_version}")
|
94 |
if 'not found' in cuda_version.lower():
|
95 |
+
raise RuntimeError("CUDA not found.")
|
96 |
|
97 |
+
# Load model and tokenizer
|
98 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
99 |
model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
|
100 |
max_seq_length = 2048,
|
|
|
104 |
)
|
105 |
logger.info("Model and tokenizer loaded.")
|
106 |
|
107 |
+
# Format the prompt
|
|
|
108 |
formatted_prompt = alpaca_prompt.format(
|
109 |
+
string + inventory_list,
|
110 |
+
user_input_text,
|
111 |
+
"",
|
112 |
)
|
113 |
logger.debug(f"Formatted prompt: {formatted_prompt}")
|
114 |
+
|
115 |
+
# Tokenize the input
|
116 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
117 |
+
logger.debug(f"Tokenized inputs: {inputs}")
|
118 |
+
|
119 |
+
# Generate output
|
120 |
+
outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True)
|
121 |
+
logger.info("Output generated.")
|
122 |
+
|
123 |
+
# Decode output
|
124 |
+
reply = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
125 |
+
logger.debug(f"Decoded output: {reply}")
|
126 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
logger.debug(f"Final reply: {reply}")
|
128 |
return reply
|
129 |
|
|
|
131 |
logger.error(f"Error loading model or CUDA issues: {e}")
|
132 |
return "There seems to be an issue with CUDA or the model. Please check the Hugging Face Spaces environment."
|
133 |
|
|
|
134 |
# Interface for inputs
|
135 |
iface = gr.Interface(
|
136 |
fn=chunk_it,
|
|
|
142 |
title="Testing",
|
143 |
)
|
144 |
|
145 |
+
iface.launch(inline=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|