CIET / app.py
VOIDER's picture
Update app.py
024c6f2 verified
raw
history blame
19.1 kB
import os
import asyncio
from typing import List, Dict, Optional, Tuple, Any
from dataclasses import dataclass, field
from pathlib import Path
import logging
import cv2
import numpy as np
import torch
import onnxruntime as rt
from PIL import Image
import gradio as gr
from transformers import pipeline
from huggingface_hub import hf_hub_download
import pandas as pd
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Import aesthetic predictor function
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
@dataclass
class EvaluationResult:
"""Data class for storing image evaluation results"""
file_name: str
image_path: str
scores: Dict[str, Optional[float]] = field(default_factory=dict)
final_score: Optional[float] = None
def calculate_final_score(self, selected_models: List[str]) -> None:
"""Calculate the average score from selected models"""
valid_scores = [
score for model, score in self.scores.items()
if model in selected_models and score is not None
]
self.final_score = np.mean(valid_scores) if valid_scores else None
class BaseModel:
"""Base class for all evaluation models"""
def __init__(self, name: str):
self.name = name
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
"""Evaluate a batch of images"""
raise NotImplementedError
class AestheticShadowModel(BaseModel):
"""Aesthetic Shadow V2 model implementation"""
def __init__(self):
super().__init__("Aesthetic Shadow")
logger.info(f"Loading {self.name} model...")
self.model = pipeline(
"image-classification",
model="NeoChen1024/aesthetic-shadow-v2-backup",
device=0 if self.device == 'cuda' else -1
)
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
try:
results = self.model(images)
scores = []
for result in results:
hq_score = next((p['score'] for p in result if p['label'] == 'hq'), 0)
scores.append(float(np.clip(hq_score * 10.0, 0.0, 10.0)))
return scores
except Exception as e:
logger.error(f"Error in {self.name}: {e}")
return [None] * len(images)
class WaifuScorerModel(BaseModel):
"""Waifu Scorer V3 model implementation"""
def __init__(self):
super().__init__("Waifu Scorer")
logger.info(f"Loading {self.name} model...")
self._load_model()
def _load_model(self):
try:
import clip
# Load MLP model
self.mlp = self._create_mlp()
model_path = hf_hub_download("Eugeoter/waifu-scorer-v3", "model.pth")
state_dict = torch.load(model_path, map_location=self.device)
self.mlp.load_state_dict(state_dict)
self.mlp.to(self.device).eval()
# Load CLIP model
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
self.available = True
except Exception as e:
logger.error(f"Failed to load {self.name}: {e}")
self.available = False
def _create_mlp(self) -> torch.nn.Module:
"""Create the MLP architecture"""
return torch.nn.Sequential(
torch.nn.Linear(768, 2048),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(2048),
torch.nn.Dropout(0.3),
torch.nn.Linear(2048, 512),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(512),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, 256),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(256),
torch.nn.Dropout(0.2),
torch.nn.Linear(256, 128),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(128),
torch.nn.Dropout(0.1),
torch.nn.Linear(128, 32),
torch.nn.ReLU(),
torch.nn.Linear(32, 1)
)
@torch.no_grad()
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
if not self.available:
return [None] * len(images)
try:
# Process images
image_tensors = torch.cat([self.preprocess(img).unsqueeze(0) for img in images])
image_tensors = image_tensors.to(self.device)
# Extract features and predict
features = self.clip_model.encode_image(image_tensors)
features = features / features.norm(dim=-1, keepdim=True)
predictions = self.mlp(features)
scores = predictions.clamp(0, 10).cpu().numpy().flatten().tolist()
return scores
except Exception as e:
logger.error(f"Error in {self.name}: {e}")
return [None] * len(images)
class AestheticPredictorV25Model(BaseModel):
"""Aesthetic Predictor V2.5 model implementation"""
def __init__(self):
super().__init__("Aesthetic V2.5")
logger.info(f"Loading {self.name} model...")
self.model, self.preprocessor = convert_v2_5_from_siglip(
low_cpu_mem_usage=True,
trust_remote_code=True,
)
if self.device == 'cuda':
self.model = self.model.to(torch.bfloat16).cuda()
@torch.no_grad()
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
try:
images_rgb = [img.convert("RGB") for img in images]
pixel_values = self.preprocessor(images=images_rgb, return_tensors="pt").pixel_values
if self.device == 'cuda':
pixel_values = pixel_values.to(torch.bfloat16).cuda()
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
if scores.ndim == 0:
scores = np.array([scores])
return [float(np.clip(s, 0.0, 10.0)) for s in scores]
except Exception as e:
logger.error(f"Error in {self.name}: {e}")
return [None] * len(images)
class AnimeAestheticModel(BaseModel):
"""Anime Aesthetic model implementation"""
def __init__(self):
super().__init__("Anime Score")
logger.info(f"Loading {self.name} model...")
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
self.session = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
scores = []
for img in images:
try:
score = self._process_single_image(img)
scores.append(float(np.clip(score * 10.0, 0.0, 10.0)))
except Exception as e:
logger.error(f"Error in {self.name} for single image: {e}")
scores.append(None)
return scores
def _process_single_image(self, img: Image.Image) -> float:
"""Process a single image through the model"""
img_np = np.array(img).astype(np.float32) / 255.0
size = 768
h, w = img_np.shape[:2]
# Calculate new dimensions
if h > w:
new_h, new_w = size, int(size * w / h)
else:
new_h, new_w = int(size * h / w), size
# Resize and center
resized = cv2.resize(img_np, (new_w, new_h))
canvas = np.zeros((size, size, 3), dtype=np.float32)
pad_h = (size - new_h) // 2
pad_w = (size - new_w) // 2
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
# Prepare input
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
return self.session.run(None, {"img": input_tensor})[0].item()
class ImageEvaluator:
"""Main class for managing image evaluation"""
def __init__(self):
self.models: Dict[str, BaseModel] = {}
self._initialize_models()
self.results: List[EvaluationResult] = []
def _initialize_models(self):
"""Initialize all evaluation models"""
model_classes = [
("aesthetic_shadow", AestheticShadowModel),
("waifu_scorer", WaifuScorerModel),
("aesthetic_predictor_v2_5", AestheticPredictorV25Model),
("anime_aesthetic", AnimeAestheticModel),
]
for key, model_class in model_classes:
try:
self.models[key] = model_class()
logger.info(f"Successfully loaded {key}")
except Exception as e:
logger.error(f"Failed to load {key}: {e}")
async def evaluate_images(
self,
file_paths: List[str],
selected_models: List[str],
batch_size: int = 8,
progress_callback = None
) -> Tuple[List[EvaluationResult], List[str]]:
"""Evaluate images with selected models"""
logs = []
results = []
# Load images
images = []
valid_paths = []
for path in file_paths:
try:
img = Image.open(path).convert("RGB")
images.append(img)
valid_paths.append(path)
except Exception as e:
logs.append(f"Failed to load {Path(path).name}: {e}")
if not images:
logs.append("No valid images to process")
return results, logs
logs.append(f"Loaded {len(images)} images")
# Process in batches
total_batches = (len(images) + batch_size - 1) // batch_size
for batch_idx in range(0, len(images), batch_size):
batch_images = images[batch_idx:batch_idx + batch_size]
batch_paths = valid_paths[batch_idx:batch_idx + batch_size]
# Evaluate with each selected model
batch_results = {}
for model_key in selected_models:
if model_key in self.models:
scores = await self.models[model_key].evaluate_batch(batch_images)
batch_results[model_key] = scores
logs.append(f"Processed batch {batch_idx//batch_size + 1}/{total_batches} with {self.models[model_key].name}")
# Create results
for i, (path, img) in enumerate(zip(batch_paths, batch_images)):
result = EvaluationResult(
file_name=Path(path).name,
image_path=path
)
for model_key in selected_models:
if model_key in batch_results:
result.scores[model_key] = batch_results[model_key][i]
result.calculate_final_score(selected_models)
results.append(result)
# Update progress
if progress_callback:
progress = (batch_idx + batch_size) / len(images) * 100
progress_callback(min(progress, 100))
self.results = results
return results, logs
def get_results_dataframe(self, selected_models: List[str]) -> pd.DataFrame:
"""Convert results to pandas DataFrame"""
if not self.results:
return pd.DataFrame()
data = []
for result in self.results:
row = {
'File Name': result.file_name,
'Image': result.image_path,
}
# Add model scores
for model_key in selected_models:
if model_key in self.models:
score = result.scores.get(model_key)
row[self.models[model_key].name] = f"{score:.4f}" if score is not None else "N/A"
row['Final Score'] = f"{result.final_score:.4f}" if result.final_score is not None else "N/A"
data.append(row)
return pd.DataFrame(data)
def create_interface():
"""Create the Gradio interface"""
evaluator = ImageEvaluator()
# Model options for checkbox
model_options = [
("Aesthetic Shadow", "aesthetic_shadow"),
("Waifu Scorer", "waifu_scorer"),
("Aesthetic V2.5", "aesthetic_predictor_v2_5"),
("Anime Score", "anime_aesthetic")
]
with gr.Blocks(theme=gr.themes.Soft(), title="Image Evaluation Tool") as demo:
gr.Markdown("""
# 🎨 Advanced Image Evaluation Tool
Evaluate images using state-of-the-art aesthetic and quality prediction models.
Upload your images and select the models you want to use for evaluation.
""")
with gr.Row():
with gr.Column(scale=1):
input_files = gr.File(
label="Upload Images",
file_count="multiple",
file_types=["image"]
)
model_checkboxes = gr.CheckboxGroup(
choices=[label for label, _ in model_options],
value=[label for label, _ in model_options],
label="Select Models",
info="Choose which models to use for evaluation"
)
with gr.Row():
batch_size = gr.Slider(
minimum=1,
maximum=64,
value=8,
step=1,
label="Batch Size",
info="Number of images to process at once"
)
with gr.Row():
evaluate_btn = gr.Button("πŸš€ Evaluate Images", variant="primary", scale=2)
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary", scale=1)
with gr.Column(scale=2):
progress = gr.Progress()
logs = gr.Textbox(
label="Processing Logs",
lines=10,
max_lines=10,
autoscroll=True
)
results_df = gr.Dataframe(
label="Evaluation Results",
interactive=False,
wrap=True
)
download_btn = gr.Button("πŸ“₯ Download Results (CSV)", variant="secondary")
download_file = gr.File(visible=False)
# State for storing results
results_state = gr.State([])
async def process_images(files, selected_model_labels, batch_size, progress=gr.Progress()):
"""Process uploaded images"""
if not files:
return "Please upload images first", pd.DataFrame(), []
# Convert labels to keys
selected_models = [key for label, key in model_options if label in selected_model_labels]
# Get file paths
file_paths = [f.name for f in files]
# Progress callback
def update_progress(value):
progress(value / 100, desc=f"Processing images... {value:.0f}%")
# Evaluate images
results, logs = await evaluator.evaluate_images(
file_paths,
selected_models,
batch_size,
update_progress
)
# Create DataFrame
df = evaluator.get_results_dataframe(selected_models)
# Format logs
log_text = "\n".join(logs[-10:]) # Show last 10 logs
return log_text, df, results
def update_results_on_model_change(selected_model_labels, results):
"""Update results when model selection changes"""
if not results:
return pd.DataFrame()
# Convert labels to keys
selected_models = [key for label, key in model_options if label in selected_model_labels]
# Recalculate final scores
for result in results:
result.calculate_final_score(selected_models)
# Update evaluator results
evaluator.results = results
# Create updated DataFrame
return evaluator.get_results_dataframe(selected_models)
def clear_interface():
"""Clear all results"""
return "", pd.DataFrame(), [], None
def prepare_download(selected_model_labels, results):
"""Prepare CSV file for download"""
if not results:
return None
# Convert labels to keys
selected_models = [key for label, key in model_options if label in selected_model_labels]
# Get DataFrame
df = evaluator.get_results_dataframe(selected_models)
# Save to temporary file
import tempfile
with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as f:
df.to_csv(f, index=False)
return f.name
# Event handlers
evaluate_btn.click(
fn=process_images,
inputs=[input_files, model_checkboxes, batch_size],
outputs=[logs, results_df, results_state]
)
model_checkboxes.change(
fn=update_results_on_model_change,
inputs=[model_checkboxes, results_state],
outputs=[results_df]
)
clear_btn.click(
fn=clear_interface,
outputs=[logs, results_df, results_state, download_file]
)
download_btn.click(
fn=prepare_download,
inputs=[model_checkboxes, results_state],
outputs=[download_file]
)
gr.Markdown("""
### πŸ“ Notes
- **Model Selection**: Choose which models to use for evaluation. Final score is the average of selected models.
- **Batch Size**: Adjust based on your GPU memory. Larger batches process faster.
- **Results Table**: Click column headers to sort. The table updates automatically when models are selected/deselected.
- **Download**: Export results as CSV for further analysis.
### 🎯 Score Interpretation
- **7-10**: High quality/aesthetic appeal
- **5-7**: Medium quality
- **0-5**: Lower quality
""")
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.queue().launch()