File size: 19,123 Bytes
57728d7
024c6f2
 
 
 
 
d924e11
57728d7
d924e11
 
8b461d6
14e747f
8b461d6
e84a5b4
57728d7
024c6f2
1bc1e75
024c6f2
 
 
e84a5b4
024c6f2
 
e84a5b4
 
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84a5b4
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
e84a5b4
024c6f2
 
 
 
 
 
 
 
 
 
 
e84a5b4
f56b01d
024c6f2
 
 
 
 
 
 
 
e84a5b4
 
 
 
024c6f2
 
 
 
1bc1e75
e84a5b4
024c6f2
 
 
 
1bc1e75
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc1e75
024c6f2
 
 
f56b01d
027d32e
024c6f2
 
 
 
 
 
 
 
1bc1e75
e84a5b4
024c6f2
027d32e
024c6f2
 
1bc1e75
f56b01d
024c6f2
 
 
 
 
 
 
 
 
 
 
 
1bc1e75
024c6f2
027d32e
024c6f2
 
 
 
 
027d32e
024c6f2
 
 
 
 
027d32e
024c6f2
027d32e
1bc1e75
e84a5b4
024c6f2
 
 
 
 
 
 
 
 
e84a5b4
 
f56b01d
024c6f2
 
f56b01d
024c6f2
e84a5b4
 
 
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56b01d
e84a5b4
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84a5b4
024c6f2
 
 
 
 
 
 
 
 
 
e84a5b4
024c6f2
 
 
 
f56b01d
024c6f2
 
 
f56b01d
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84a5b4
 
024c6f2
 
 
e84a5b4
024c6f2
 
 
 
 
 
 
e84a5b4
024c6f2
 
 
 
 
 
 
e84a5b4
8b461d6
024c6f2
 
 
 
 
 
8b461d6
024c6f2
 
 
 
 
 
8b461d6
e84a5b4
024c6f2
 
 
 
 
 
 
 
e84a5b4
024c6f2
 
 
e84a5b4
024c6f2
 
 
 
 
 
 
 
8b461d6
024c6f2
 
 
e84a5b4
8b461d6
024c6f2
 
 
 
 
 
 
 
 
 
 
1bc1e75
024c6f2
 
1bc1e75
024c6f2
 
1bc1e75
024c6f2
 
 
e84a5b4
024c6f2
 
 
 
 
 
e84a5b4
 
024c6f2
 
1bc1e75
024c6f2
 
 
 
e84a5b4
024c6f2
 
 
 
1bc1e75
024c6f2
 
1bc1e75
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b461d6
024c6f2
 
 
 
8b461d6
024c6f2
 
 
 
f56b01d
024c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84a5b4
8b461d6
024c6f2
8b461d6
024c6f2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os
import asyncio
from typing import List, Dict, Optional, Tuple, Any
from dataclasses import dataclass, field
from pathlib import Path
import logging

import cv2
import numpy as np
import torch
import onnxruntime as rt
from PIL import Image
import gradio as gr
from transformers import pipeline
from huggingface_hub import hf_hub_download
import pandas as pd

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Import aesthetic predictor function
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip


@dataclass
class EvaluationResult:
    """Data class for storing image evaluation results"""
    file_name: str
    image_path: str
    scores: Dict[str, Optional[float]] = field(default_factory=dict)
    final_score: Optional[float] = None
    
    def calculate_final_score(self, selected_models: List[str]) -> None:
        """Calculate the average score from selected models"""
        valid_scores = [
            score for model, score in self.scores.items() 
            if model in selected_models and score is not None
        ]
        self.final_score = np.mean(valid_scores) if valid_scores else None


class BaseModel:
    """Base class for all evaluation models"""
    def __init__(self, name: str):
        self.name = name
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        
    async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
        """Evaluate a batch of images"""
        raise NotImplementedError


class AestheticShadowModel(BaseModel):
    """Aesthetic Shadow V2 model implementation"""
    def __init__(self):
        super().__init__("Aesthetic Shadow")
        logger.info(f"Loading {self.name} model...")
        self.model = pipeline(
            "image-classification", 
            model="NeoChen1024/aesthetic-shadow-v2-backup",
            device=0 if self.device == 'cuda' else -1
        )
    
    async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
        try:
            results = self.model(images)
            scores = []
            for result in results:
                hq_score = next((p['score'] for p in result if p['label'] == 'hq'), 0)
                scores.append(float(np.clip(hq_score * 10.0, 0.0, 10.0)))
            return scores
        except Exception as e:
            logger.error(f"Error in {self.name}: {e}")
            return [None] * len(images)


class WaifuScorerModel(BaseModel):
    """Waifu Scorer V3 model implementation"""
    def __init__(self):
        super().__init__("Waifu Scorer")
        logger.info(f"Loading {self.name} model...")
        self._load_model()
    
    def _load_model(self):
        try:
            import clip
            
            # Load MLP model
            self.mlp = self._create_mlp()
            model_path = hf_hub_download("Eugeoter/waifu-scorer-v3", "model.pth")
            state_dict = torch.load(model_path, map_location=self.device)
            self.mlp.load_state_dict(state_dict)
            self.mlp.to(self.device).eval()
            
            # Load CLIP model
            self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
            self.available = True
        except Exception as e:
            logger.error(f"Failed to load {self.name}: {e}")
            self.available = False
    
    def _create_mlp(self) -> torch.nn.Module:
        """Create the MLP architecture"""
        return torch.nn.Sequential(
            torch.nn.Linear(768, 2048),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(2048),
            torch.nn.Dropout(0.3),
            torch.nn.Linear(2048, 512),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(512),
            torch.nn.Dropout(0.3),
            torch.nn.Linear(512, 256),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(256),
            torch.nn.Dropout(0.2),
            torch.nn.Linear(256, 128),
            torch.nn.ReLU(),
            torch.nn.BatchNorm1d(128),
            torch.nn.Dropout(0.1),
            torch.nn.Linear(128, 32),
            torch.nn.ReLU(),
            torch.nn.Linear(32, 1)
        )
    
    @torch.no_grad()
    async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
        if not self.available:
            return [None] * len(images)
        
        try:
            # Process images
            image_tensors = torch.cat([self.preprocess(img).unsqueeze(0) for img in images])
            image_tensors = image_tensors.to(self.device)
            
            # Extract features and predict
            features = self.clip_model.encode_image(image_tensors)
            features = features / features.norm(dim=-1, keepdim=True)
            predictions = self.mlp(features)
            
            scores = predictions.clamp(0, 10).cpu().numpy().flatten().tolist()
            return scores
        except Exception as e:
            logger.error(f"Error in {self.name}: {e}")
            return [None] * len(images)


class AestheticPredictorV25Model(BaseModel):
    """Aesthetic Predictor V2.5 model implementation"""
    def __init__(self):
        super().__init__("Aesthetic V2.5")
        logger.info(f"Loading {self.name} model...")
        self.model, self.preprocessor = convert_v2_5_from_siglip(
            low_cpu_mem_usage=True,
            trust_remote_code=True,
        )
        if self.device == 'cuda':
            self.model = self.model.to(torch.bfloat16).cuda()
    
    @torch.no_grad()
    async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
        try:
            images_rgb = [img.convert("RGB") for img in images]
            pixel_values = self.preprocessor(images=images_rgb, return_tensors="pt").pixel_values
            
            if self.device == 'cuda':
                pixel_values = pixel_values.to(torch.bfloat16).cuda()
            
            scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
            if scores.ndim == 0:
                scores = np.array([scores])
            
            return [float(np.clip(s, 0.0, 10.0)) for s in scores]
        except Exception as e:
            logger.error(f"Error in {self.name}: {e}")
            return [None] * len(images)


class AnimeAestheticModel(BaseModel):
    """Anime Aesthetic model implementation"""
    def __init__(self):
        super().__init__("Anime Score")
        logger.info(f"Loading {self.name} model...")
        model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
        self.session = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
    
    async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
        scores = []
        for img in images:
            try:
                score = self._process_single_image(img)
                scores.append(float(np.clip(score * 10.0, 0.0, 10.0)))
            except Exception as e:
                logger.error(f"Error in {self.name} for single image: {e}")
                scores.append(None)
        return scores
    
    def _process_single_image(self, img: Image.Image) -> float:
        """Process a single image through the model"""
        img_np = np.array(img).astype(np.float32) / 255.0
        size = 768
        h, w = img_np.shape[:2]
        
        # Calculate new dimensions
        if h > w:
            new_h, new_w = size, int(size * w / h)
        else:
            new_h, new_w = int(size * h / w), size
        
        # Resize and center
        resized = cv2.resize(img_np, (new_w, new_h))
        canvas = np.zeros((size, size, 3), dtype=np.float32)
        pad_h = (size - new_h) // 2
        pad_w = (size - new_w) // 2
        canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
        
        # Prepare input
        input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
        return self.session.run(None, {"img": input_tensor})[0].item()


class ImageEvaluator:
    """Main class for managing image evaluation"""
    def __init__(self):
        self.models: Dict[str, BaseModel] = {}
        self._initialize_models()
        self.results: List[EvaluationResult] = []
        
    def _initialize_models(self):
        """Initialize all evaluation models"""
        model_classes = [
            ("aesthetic_shadow", AestheticShadowModel),
            ("waifu_scorer", WaifuScorerModel),
            ("aesthetic_predictor_v2_5", AestheticPredictorV25Model),
            ("anime_aesthetic", AnimeAestheticModel),
        ]
        
        for key, model_class in model_classes:
            try:
                self.models[key] = model_class()
                logger.info(f"Successfully loaded {key}")
            except Exception as e:
                logger.error(f"Failed to load {key}: {e}")
    
    async def evaluate_images(
        self, 
        file_paths: List[str], 
        selected_models: List[str],
        batch_size: int = 8,
        progress_callback = None
    ) -> Tuple[List[EvaluationResult], List[str]]:
        """Evaluate images with selected models"""
        logs = []
        results = []
        
        # Load images
        images = []
        valid_paths = []
        for path in file_paths:
            try:
                img = Image.open(path).convert("RGB")
                images.append(img)
                valid_paths.append(path)
            except Exception as e:
                logs.append(f"Failed to load {Path(path).name}: {e}")
        
        if not images:
            logs.append("No valid images to process")
            return results, logs
        
        logs.append(f"Loaded {len(images)} images")
        
        # Process in batches
        total_batches = (len(images) + batch_size - 1) // batch_size
        
        for batch_idx in range(0, len(images), batch_size):
            batch_images = images[batch_idx:batch_idx + batch_size]
            batch_paths = valid_paths[batch_idx:batch_idx + batch_size]
            
            # Evaluate with each selected model
            batch_results = {}
            for model_key in selected_models:
                if model_key in self.models:
                    scores = await self.models[model_key].evaluate_batch(batch_images)
                    batch_results[model_key] = scores
                    logs.append(f"Processed batch {batch_idx//batch_size + 1}/{total_batches} with {self.models[model_key].name}")
            
            # Create results
            for i, (path, img) in enumerate(zip(batch_paths, batch_images)):
                result = EvaluationResult(
                    file_name=Path(path).name,
                    image_path=path
                )
                
                for model_key in selected_models:
                    if model_key in batch_results:
                        result.scores[model_key] = batch_results[model_key][i]
                
                result.calculate_final_score(selected_models)
                results.append(result)
            
            # Update progress
            if progress_callback:
                progress = (batch_idx + batch_size) / len(images) * 100
                progress_callback(min(progress, 100))
        
        self.results = results
        return results, logs
    
    def get_results_dataframe(self, selected_models: List[str]) -> pd.DataFrame:
        """Convert results to pandas DataFrame"""
        if not self.results:
            return pd.DataFrame()
        
        data = []
        for result in self.results:
            row = {
                'File Name': result.file_name,
                'Image': result.image_path,
            }
            
            # Add model scores
            for model_key in selected_models:
                if model_key in self.models:
                    score = result.scores.get(model_key)
                    row[self.models[model_key].name] = f"{score:.4f}" if score is not None else "N/A"
            
            row['Final Score'] = f"{result.final_score:.4f}" if result.final_score is not None else "N/A"
            data.append(row)
        
        return pd.DataFrame(data)


def create_interface():
    """Create the Gradio interface"""
    evaluator = ImageEvaluator()
    
    # Model options for checkbox
    model_options = [
        ("Aesthetic Shadow", "aesthetic_shadow"),
        ("Waifu Scorer", "waifu_scorer"),
        ("Aesthetic V2.5", "aesthetic_predictor_v2_5"),
        ("Anime Score", "anime_aesthetic")
    ]
    
    with gr.Blocks(theme=gr.themes.Soft(), title="Image Evaluation Tool") as demo:
        gr.Markdown("""
        # 🎨 Advanced Image Evaluation Tool
        
        Evaluate images using state-of-the-art aesthetic and quality prediction models.
        Upload your images and select the models you want to use for evaluation.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_files = gr.File(
                    label="Upload Images",
                    file_count="multiple",
                    file_types=["image"]
                )
                
                model_checkboxes = gr.CheckboxGroup(
                    choices=[label for label, _ in model_options],
                    value=[label for label, _ in model_options],
                    label="Select Models",
                    info="Choose which models to use for evaluation"
                )
                
                with gr.Row():
                    batch_size = gr.Slider(
                        minimum=1,
                        maximum=64,
                        value=8,
                        step=1,
                        label="Batch Size",
                        info="Number of images to process at once"
                    )
                
                with gr.Row():
                    evaluate_btn = gr.Button("πŸš€ Evaluate Images", variant="primary", scale=2)
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary", scale=1)
            
            with gr.Column(scale=2):
                progress = gr.Progress()
                logs = gr.Textbox(
                    label="Processing Logs",
                    lines=10,
                    max_lines=10,
                    autoscroll=True
                )
                
                results_df = gr.Dataframe(
                    label="Evaluation Results",
                    interactive=False,
                    wrap=True
                )
                
                download_btn = gr.Button("πŸ“₯ Download Results (CSV)", variant="secondary")
                download_file = gr.File(visible=False)
        
        # State for storing results
        results_state = gr.State([])
        
        async def process_images(files, selected_model_labels, batch_size, progress=gr.Progress()):
            """Process uploaded images"""
            if not files:
                return "Please upload images first", pd.DataFrame(), []
            
            # Convert labels to keys
            selected_models = [key for label, key in model_options if label in selected_model_labels]
            
            # Get file paths
            file_paths = [f.name for f in files]
            
            # Progress callback
            def update_progress(value):
                progress(value / 100, desc=f"Processing images... {value:.0f}%")
            
            # Evaluate images
            results, logs = await evaluator.evaluate_images(
                file_paths,
                selected_models,
                batch_size,
                update_progress
            )
            
            # Create DataFrame
            df = evaluator.get_results_dataframe(selected_models)
            
            # Format logs
            log_text = "\n".join(logs[-10:])  # Show last 10 logs
            
            return log_text, df, results
        
        def update_results_on_model_change(selected_model_labels, results):
            """Update results when model selection changes"""
            if not results:
                return pd.DataFrame()
            
            # Convert labels to keys
            selected_models = [key for label, key in model_options if label in selected_model_labels]
            
            # Recalculate final scores
            for result in results:
                result.calculate_final_score(selected_models)
            
            # Update evaluator results
            evaluator.results = results
            
            # Create updated DataFrame
            return evaluator.get_results_dataframe(selected_models)
        
        def clear_interface():
            """Clear all results"""
            return "", pd.DataFrame(), [], None
        
        def prepare_download(selected_model_labels, results):
            """Prepare CSV file for download"""
            if not results:
                return None
            
            # Convert labels to keys
            selected_models = [key for label, key in model_options if label in selected_model_labels]
            
            # Get DataFrame
            df = evaluator.get_results_dataframe(selected_models)
            
            # Save to temporary file
            import tempfile
            with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as f:
                df.to_csv(f, index=False)
                return f.name
        
        # Event handlers
        evaluate_btn.click(
            fn=process_images,
            inputs=[input_files, model_checkboxes, batch_size],
            outputs=[logs, results_df, results_state]
        )
        
        model_checkboxes.change(
            fn=update_results_on_model_change,
            inputs=[model_checkboxes, results_state],
            outputs=[results_df]
        )
        
        clear_btn.click(
            fn=clear_interface,
            outputs=[logs, results_df, results_state, download_file]
        )
        
        download_btn.click(
            fn=prepare_download,
            inputs=[model_checkboxes, results_state],
            outputs=[download_file]
        )
        
        gr.Markdown("""
        ### πŸ“ Notes
        - **Model Selection**: Choose which models to use for evaluation. Final score is the average of selected models.
        - **Batch Size**: Adjust based on your GPU memory. Larger batches process faster.
        - **Results Table**: Click column headers to sort. The table updates automatically when models are selected/deselected.
        - **Download**: Export results as CSV for further analysis.
        
        ### 🎯 Score Interpretation
        - **7-10**: High quality/aesthetic appeal
        - **5-7**: Medium quality
        - **0-5**: Lower quality
        """)
    
    return demo


if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    demo.queue().launch()