Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import asyncio
|
3 |
-
from
|
4 |
-
|
5 |
from pathlib import Path
|
6 |
import logging
|
7 |
|
@@ -11,508 +13,981 @@ import torch
|
|
11 |
import onnxruntime as rt
|
12 |
from PIL import Image
|
13 |
import gradio as gr
|
14 |
-
from transformers import pipeline
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
-
import pandas as pd
|
17 |
|
18 |
-
# Configure logging
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
]
|
40 |
-
self.
|
41 |
|
|
|
|
|
42 |
|
43 |
-
class BaseModel:
|
44 |
-
"""Base class for all evaluation models"""
|
45 |
-
def __init__(self, name: str):
|
46 |
-
self.name = name
|
47 |
-
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
48 |
-
|
49 |
-
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
50 |
-
"""Evaluate a batch of images"""
|
51 |
-
raise NotImplementedError
|
52 |
-
|
53 |
-
|
54 |
-
class AestheticShadowModel(BaseModel):
|
55 |
-
"""Aesthetic Shadow V2 model implementation"""
|
56 |
-
def __init__(self):
|
57 |
-
super().__init__("Aesthetic Shadow")
|
58 |
-
logger.info(f"Loading {self.name} model...")
|
59 |
-
self.model = pipeline(
|
60 |
-
"image-classification",
|
61 |
-
model="NeoChen1024/aesthetic-shadow-v2-backup",
|
62 |
-
device=0 if self.device == 'cuda' else -1
|
63 |
-
)
|
64 |
-
|
65 |
-
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
66 |
-
try:
|
67 |
-
results = self.model(images)
|
68 |
-
scores = []
|
69 |
-
for result in results:
|
70 |
-
hq_score = next((p['score'] for p in result if p['label'] == 'hq'), 0)
|
71 |
-
scores.append(float(np.clip(hq_score * 10.0, 0.0, 10.0)))
|
72 |
-
return scores
|
73 |
-
except Exception as e:
|
74 |
-
logger.error(f"Error in {self.name}: {e}")
|
75 |
-
return [None] * len(images)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
class WaifuScorerModel(BaseModel):
|
79 |
-
"""Waifu Scorer V3 model implementation"""
|
80 |
-
def __init__(self):
|
81 |
-
super().__init__("Waifu Scorer")
|
82 |
-
logger.info(f"Loading {self.name} model...")
|
83 |
-
self._load_model()
|
84 |
-
|
85 |
-
def _load_model(self):
|
86 |
try:
|
87 |
-
import clip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
self.mlp.load_state_dict(state_dict)
|
94 |
-
self.mlp.to(self.device
|
95 |
-
|
96 |
-
|
97 |
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
|
98 |
self.available = True
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
-
logger.error(f"
|
101 |
-
|
102 |
-
|
103 |
-
def _create_mlp(self) -> torch.nn.Module:
|
104 |
-
"""Create the MLP architecture"""
|
105 |
-
return torch.nn.Sequential(
|
106 |
-
torch.nn.Linear(768, 2048),
|
107 |
-
torch.nn.ReLU(),
|
108 |
-
torch.nn.BatchNorm1d(2048),
|
109 |
-
torch.nn.Dropout(0.3),
|
110 |
-
torch.nn.Linear(2048, 512),
|
111 |
-
torch.nn.ReLU(),
|
112 |
-
torch.nn.BatchNorm1d(512),
|
113 |
-
torch.nn.Dropout(0.3),
|
114 |
-
torch.nn.Linear(512, 256),
|
115 |
-
torch.nn.ReLU(),
|
116 |
-
torch.nn.BatchNorm1d(256),
|
117 |
-
torch.nn.Dropout(0.2),
|
118 |
-
torch.nn.Linear(256, 128),
|
119 |
-
torch.nn.ReLU(),
|
120 |
-
torch.nn.BatchNorm1d(128),
|
121 |
-
torch.nn.Dropout(0.1),
|
122 |
-
torch.nn.Linear(128, 32),
|
123 |
-
torch.nn.ReLU(),
|
124 |
-
torch.nn.Linear(32, 1)
|
125 |
-
)
|
126 |
-
|
127 |
@torch.no_grad()
|
128 |
-
|
129 |
if not self.available:
|
130 |
return [None] * len(images)
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
try:
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
predictions = self.mlp(features)
|
141 |
|
142 |
-
|
143 |
-
|
|
|
144 |
except Exception as e:
|
145 |
-
logger.error(f"Error
|
146 |
-
return [None] *
|
147 |
|
148 |
|
149 |
-
class
|
150 |
-
|
151 |
-
|
152 |
-
super().__init__("Aesthetic V2.5")
|
153 |
-
logger.info(f"Loading {self.name} model...")
|
154 |
self.model, self.preprocessor = convert_v2_5_from_siglip(
|
155 |
-
low_cpu_mem_usage=True,
|
156 |
-
trust_remote_code=True,
|
157 |
)
|
158 |
-
if self.device == 'cuda':
|
159 |
self.model = self.model.to(torch.bfloat16).cuda()
|
160 |
-
|
|
|
161 |
@torch.no_grad()
|
162 |
-
|
|
|
|
|
163 |
try:
|
164 |
images_rgb = [img.convert("RGB") for img in images]
|
165 |
pixel_values = self.preprocessor(images=images_rgb, return_tensors="pt").pixel_values
|
166 |
-
|
167 |
-
if self.device == 'cuda':
|
168 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
169 |
|
170 |
-
|
171 |
-
if
|
172 |
-
scores =
|
173 |
-
|
174 |
-
|
|
|
175 |
except Exception as e:
|
176 |
-
logger.error(f"Error
|
177 |
return [None] * len(images)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
def _process_single_image(self, img: Image.Image) -> float:
|
200 |
-
"""Process a single image through the model"""
|
201 |
-
img_np = np.array(img).astype(np.float32) / 255.0
|
202 |
-
size = 768
|
203 |
-
h, w = img_np.shape[:2]
|
204 |
-
|
205 |
-
# Calculate new dimensions
|
206 |
-
if h > w:
|
207 |
-
new_h, new_w = size, int(size * w / h)
|
208 |
-
else:
|
209 |
-
new_h, new_w = int(size * h / w), size
|
210 |
-
|
211 |
-
# Resize and center
|
212 |
-
resized = cv2.resize(img_np, (new_w, new_h))
|
213 |
-
canvas = np.zeros((size, size, 3), dtype=np.float32)
|
214 |
-
pad_h = (size - new_h) // 2
|
215 |
-
pad_w = (size - new_w) // 2
|
216 |
-
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
|
217 |
|
218 |
-
#
|
219 |
-
|
220 |
-
return
|
|
|
|
|
|
|
221 |
|
|
|
|
|
|
|
222 |
|
223 |
-
class
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
self.
|
228 |
-
self.
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
try:
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
except Exception as e:
|
244 |
-
logger.error(f"
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
for path in file_paths:
|
261 |
try:
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
image_path=path
|
294 |
-
)
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
def get_results_dataframe(self, selected_models: List[str]) -> pd.DataFrame:
|
312 |
-
"""Convert results to pandas DataFrame"""
|
313 |
-
if not self.results:
|
314 |
-
return pd.DataFrame()
|
315 |
-
|
316 |
-
data = []
|
317 |
-
for result in self.results:
|
318 |
-
row = {
|
319 |
-
'File Name': result.file_name,
|
320 |
-
'Image': result.image_path,
|
321 |
-
}
|
322 |
|
323 |
-
|
324 |
-
for model_key in selected_models:
|
325 |
-
if model_key in self.models:
|
326 |
-
score = result.scores.get(model_key)
|
327 |
-
row[self.models[model_key].name] = f"{score:.4f}" if score is not None else "N/A"
|
328 |
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
def create_interface():
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
model_options = [
|
341 |
-
("Aesthetic Shadow", "aesthetic_shadow"),
|
342 |
-
("Waifu Scorer", "waifu_scorer"),
|
343 |
-
("Aesthetic V2.5", "aesthetic_predictor_v2_5"),
|
344 |
-
("Anime Score", "anime_aesthetic")
|
345 |
-
]
|
346 |
|
347 |
-
|
|
|
|
|
|
|
|
|
348 |
gr.Markdown("""
|
349 |
-
#
|
350 |
-
|
351 |
-
|
352 |
-
Upload your images and select the models you want to use for evaluation.
|
353 |
""")
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
with gr.Row():
|
356 |
-
with gr.Column(scale=1):
|
357 |
-
|
358 |
-
label="Upload Images",
|
359 |
-
file_count="multiple",
|
360 |
-
file_types=["image"]
|
361 |
-
)
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
minimum=1,
|
373 |
-
maximum=64,
|
374 |
-
value=8,
|
375 |
-
step=1,
|
376 |
-
label="Batch Size",
|
377 |
-
info="Number of images to process at once"
|
378 |
)
|
|
|
|
|
|
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
with gr.Column(scale=
|
385 |
-
|
386 |
-
|
387 |
-
label="Processing Logs",
|
388 |
-
lines=10,
|
389 |
-
max_lines=10,
|
390 |
-
autoscroll=True
|
391 |
-
)
|
392 |
|
393 |
-
|
|
|
|
|
|
|
|
|
394 |
label="Evaluation Results",
|
395 |
-
interactive=
|
396 |
-
|
|
|
|
|
397 |
)
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
async def
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
#
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
#
|
417 |
-
|
418 |
-
|
|
|
|
|
419 |
|
420 |
-
#
|
421 |
-
|
422 |
-
|
423 |
-
selected_models,
|
424 |
-
batch_size,
|
425 |
-
update_progress
|
426 |
)
|
427 |
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
#
|
442 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
|
448 |
-
|
449 |
-
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
def
|
459 |
-
|
460 |
-
|
461 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
-
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
-
#
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
outputs=[logs, results_df, results_state]
|
480 |
-
)
|
481 |
-
|
482 |
-
model_checkboxes.change(
|
483 |
-
fn=update_results_on_model_change,
|
484 |
-
inputs=[model_checkboxes, results_state],
|
485 |
-
outputs=[results_df]
|
486 |
)
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
clear_btn.click(
|
489 |
-
fn=
|
490 |
-
outputs=[
|
|
|
|
|
|
|
491 |
)
|
492 |
|
493 |
-
|
494 |
-
fn=
|
495 |
-
inputs=[
|
496 |
-
outputs=[
|
497 |
)
|
498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
gr.Markdown("""
|
500 |
-
###
|
501 |
-
- **Model Selection**:
|
502 |
-
- **
|
503 |
-
- **
|
504 |
-
- **
|
505 |
-
|
506 |
-
### 🎯 Score Interpretation
|
507 |
-
- **7-10**: High quality/aesthetic appeal
|
508 |
-
- **5-7**: Medium quality
|
509 |
-
- **0-5**: Lower quality
|
510 |
""")
|
511 |
-
|
512 |
return demo
|
513 |
|
514 |
|
515 |
if __name__ == "__main__":
|
516 |
-
#
|
517 |
-
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import shutil
|
3 |
+
import tempfile
|
4 |
import asyncio
|
5 |
+
from io import BytesIO, StringIO
|
6 |
+
import csv
|
7 |
from pathlib import Path
|
8 |
import logging
|
9 |
|
|
|
13 |
import onnxruntime as rt
|
14 |
from PIL import Image
|
15 |
import gradio as gr
|
16 |
+
from transformers import pipeline, AutoProcessor, AutoModelForImageClassification
|
17 |
from huggingface_hub import hf_hub_download
|
|
|
18 |
|
19 |
+
# Configure basic logging
|
20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
+
# --- Dependency: aesthetic_predictor_v2_5.py ---
|
24 |
+
# This file should exist in the same directory or be in PYTHONPATH.
|
25 |
+
# For demonstration, a stub is provided. Replace with actual implementation.
|
26 |
+
# aesthetic_predictor_v2_5.py STUB START
|
27 |
+
# (Normally this would be in its own file: aesthetic_predictor_v2_5.py)
|
28 |
+
def convert_v2_5_from_siglip(repo_id="unum-cloud/siglip-base-patch16-224-aesthetic-v2.5", low_cpu_mem_usage=True, trust_remote_code=True):
|
29 |
+
logger.info(f"Loading model and preprocessor from Hugging Face Hub: {repo_id}")
|
30 |
+
try:
|
31 |
+
# Attempt to load actual models if available and network permits
|
32 |
+
processor = AutoProcessor.from_pretrained(repo_id, low_cpu_mem_usage=low_cpu_mem_usage, trust_remote_code=trust_remote_code)
|
33 |
+
model = AutoModelForImageClassification.from_pretrained(repo_id, low_cpu_mem_usage=low_cpu_mem_usage, trust_remote_code=trust_remote_code)
|
34 |
+
logger.info("Successfully loaded model and preprocessor from Hugging Face Hub.")
|
35 |
+
except Exception as e:
|
36 |
+
logger.warning(f"Failed to load from {repo_id} due to: {e}. Using fallback mock objects.")
|
37 |
+
# Fallback to simpler mock objects if HF download fails or for offline use
|
38 |
+
class MockProcessor:
|
39 |
+
def __call__(self, images, return_tensors="pt"):
|
40 |
+
if isinstance(images, list):
|
41 |
+
num_images = len(images)
|
42 |
+
return {"pixel_values": torch.randn(num_images, 3, 224, 224)}
|
43 |
+
else:
|
44 |
+
return {"pixel_values": torch.randn(1, 3, 224, 224)}
|
45 |
+
class MockModel:
|
46 |
+
def __init__(self): self._parameters = {"dummy": torch.nn.Parameter(torch.empty(0))}
|
47 |
+
def __call__(self, pixel_values):
|
48 |
+
bs = pixel_values.shape[0]
|
49 |
+
class Output:
|
50 |
+
def __init__(self, logits_val): self.logits = logits_val
|
51 |
+
return Output(logits_val=torch.rand(bs, 1) * 10) # Simulate scores 0-10
|
52 |
+
def to(self, *args, **kwargs): return self
|
53 |
+
def cuda(self, *args, **kwargs): return self
|
54 |
+
def bfloat16(self, *args, **kwargs): return self
|
55 |
+
processor = MockProcessor()
|
56 |
+
model = MockModel()
|
57 |
+
logger.info("Using fallback mock model and preprocessor for Aesthetic Predictor V2.5.")
|
58 |
+
return model, processor
|
59 |
+
# aesthetic_predictor_v2_5.py STUB END
|
60 |
|
61 |
|
62 |
+
#####################################
|
63 |
+
# Model Definitions #
|
64 |
+
#####################################
|
65 |
+
|
66 |
+
class MLP(torch.nn.Module):
|
67 |
+
def __init__(self, input_size: int, batch_norm: bool = True):
|
68 |
+
super().__init__()
|
69 |
+
self.input_size = input_size
|
70 |
+
layers = [
|
71 |
+
torch.nn.Linear(self.input_size, 2048), torch.nn.ReLU(),
|
72 |
+
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.3),
|
73 |
+
torch.nn.Linear(2048, 512), torch.nn.ReLU(),
|
74 |
+
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.3),
|
75 |
+
torch.nn.Linear(512, 256), torch.nn.ReLU(),
|
76 |
+
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.2),
|
77 |
+
torch.nn.Linear(256, 128), torch.nn.ReLU(),
|
78 |
+
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.1),
|
79 |
+
torch.nn.Linear(128, 32), torch.nn.ReLU(),
|
80 |
+
torch.nn.Linear(32, 1)
|
81 |
]
|
82 |
+
self.layers = torch.nn.Sequential(*layers)
|
83 |
|
84 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
85 |
+
return self.layers(x)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
class WaifuScorer:
|
89 |
+
def __init__(self, model_path: str = None, device: str = 'cuda', cache_dir: str = None, verbose: bool = False):
|
90 |
+
self.verbose = verbose
|
91 |
+
self.device = device
|
92 |
+
self.dtype = torch.float32
|
93 |
+
self.available = False
|
94 |
+
self.clip_model = None
|
95 |
+
self.preprocess = None
|
96 |
+
self.mlp = None
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
try:
|
99 |
+
import clip # Dynamically import clip
|
100 |
+
if model_path is None:
|
101 |
+
model_path = "Eugeoter/waifu-scorer-v3/model.pth"
|
102 |
+
if self.verbose: logger.info(f"WaifuScorer model path not provided. Using default: {model_path}")
|
103 |
+
|
104 |
+
if not Path(model_path).is_file():
|
105 |
+
try:
|
106 |
+
# Assuming model_path like "user/repo/file.pth" for hf_hub_download
|
107 |
+
parts = model_path.split("/")
|
108 |
+
if len(parts) >= 3:
|
109 |
+
repo_id_parts = parts[:-1]
|
110 |
+
filename = parts[-1]
|
111 |
+
repo_id_str = "/".join(repo_id_parts)
|
112 |
+
model_path_resolved = hf_hub_download(repo_id=repo_id_str, filename=filename, cache_dir=cache_dir)
|
113 |
+
else: # try as repo_id and assume model.pth or common name
|
114 |
+
model_path_resolved = hf_hub_download(repo_id=model_path, filename="model.pth", cache_dir=cache_dir) # fallback filename
|
115 |
+
except Exception as e:
|
116 |
+
logger.error(f"Failed to download WaifuScorer model from HF Hub ({model_path}): {e}")
|
117 |
+
# Try a more specific default if the generic one failed
|
118 |
+
logger.info("Attempting to download specific WaifuScorer model Eugeoter/waifu-scorer-v3/model.pth")
|
119 |
+
model_path_resolved = hf_hub_download("Eugeoter/waifu-scorer-v3", "model.pth", cache_dir=cache_dir)
|
120 |
+
model_path = model_path_resolved
|
121 |
+
|
122 |
+
|
123 |
+
if self.verbose: logger.info(f"Loading WaifuScorer model from: {model_path}")
|
124 |
+
|
125 |
+
self.mlp = MLP(input_size=768)
|
126 |
+
if str(model_path).endswith(".safetensors"):
|
127 |
+
from safetensors.torch import load_file
|
128 |
+
state_dict = load_file(model_path, device=device)
|
129 |
+
else:
|
130 |
+
state_dict = torch.load(model_path, map_location=device)
|
131 |
|
132 |
+
# Adjust keys if necessary (e.g. if saved from DataParallel)
|
133 |
+
if any(key.startswith("module.") for key in state_dict.keys()):
|
134 |
+
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
|
135 |
+
|
136 |
self.mlp.load_state_dict(state_dict)
|
137 |
+
self.mlp.to(device=self.device, dtype=self.dtype)
|
138 |
+
self.mlp.eval()
|
139 |
+
|
140 |
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
|
141 |
self.available = True
|
142 |
+
logger.info("WaifuScorer initialized successfully.")
|
143 |
+
except ImportError:
|
144 |
+
logger.error("OpenAI CLIP library not found. WaifuScorer will be unavailable. Please install with 'pip install openai-clip'")
|
145 |
except Exception as e:
|
146 |
+
logger.error(f"Unable to initialize WaifuScorer: {e}")
|
147 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
@torch.no_grad()
|
149 |
+
def __call__(self, images: list[Image.Image]) -> list[float | None]:
|
150 |
if not self.available:
|
151 |
return [None] * len(images)
|
152 |
|
153 |
+
if not images:
|
154 |
+
return []
|
155 |
+
|
156 |
+
original_n = len(images)
|
157 |
+
# Handle single image case for CLIP if it has issues with batch_size=1 (some versions might)
|
158 |
+
processed_images = images if len(images) > 1 else images * 2
|
159 |
+
|
160 |
try:
|
161 |
+
image_tensors = [self.preprocess(img).unsqueeze(0) for img in processed_images]
|
162 |
+
image_batch = torch.cat(image_tensors).to(self.device)
|
163 |
+
image_features = self.clip_model.encode_image(image_batch)
|
164 |
|
165 |
+
norm = image_features.norm(p=2, dim=-1, keepdim=True)
|
166 |
+
norm = torch.where(norm == 0, torch.tensor(1.0, device=norm.device, dtype=norm.dtype), norm) # Avoid division by zero
|
167 |
+
im_emb = (image_features / norm).to(device=self.device, dtype=self.dtype)
|
|
|
168 |
|
169 |
+
predictions = self.mlp(im_emb)
|
170 |
+
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
|
171 |
+
return scores[:original_n]
|
172 |
except Exception as e:
|
173 |
+
logger.error(f"Error during WaifuScorer prediction: {e}")
|
174 |
+
return [None] * original_n
|
175 |
|
176 |
|
177 |
+
class AestheticPredictorV2_5_Wrapper:
|
178 |
+
def __init__(self, device: str):
|
179 |
+
self.device = device
|
|
|
|
|
180 |
self.model, self.preprocessor = convert_v2_5_from_siglip(
|
181 |
+
low_cpu_mem_usage=True, trust_remote_code=True
|
|
|
182 |
)
|
183 |
+
if self.device == 'cuda' and torch.cuda.is_available():
|
184 |
self.model = self.model.to(torch.bfloat16).cuda()
|
185 |
+
logger.info("Aesthetic Predictor V2.5 Wrapper initialized.")
|
186 |
+
|
187 |
@torch.no_grad()
|
188 |
+
def inference(self, images: list[Image.Image]) -> list[float | None]:
|
189 |
+
if not images:
|
190 |
+
return []
|
191 |
try:
|
192 |
images_rgb = [img.convert("RGB") for img in images]
|
193 |
pixel_values = self.preprocessor(images=images_rgb, return_tensors="pt").pixel_values
|
194 |
+
if self.device == 'cuda' and torch.cuda.is_available():
|
|
|
195 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
196 |
|
197 |
+
scores_tensor = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
|
198 |
+
if scores_tensor.ndim == 0: # Single image result
|
199 |
+
scores = [scores_tensor.item()]
|
200 |
+
else:
|
201 |
+
scores = scores_tensor.tolist()
|
202 |
+
return [round(max(0.0, min(s, 10.0)), 4) for s in scores] # Clip and round
|
203 |
except Exception as e:
|
204 |
+
logger.error(f"Error during Aesthetic Predictor V2.5 inference: {e}")
|
205 |
return [None] * len(images)
|
206 |
|
207 |
+
def load_anime_aesthetic_onnx_model(cache_dir: str = None) -> rt.InferenceSession | None:
|
208 |
+
try:
|
209 |
+
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx", cache_dir=cache_dir)
|
210 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if torch.cuda.is_available() else ['CPUExecutionProvider']
|
211 |
+
session = rt.InferenceSession(model_path, providers=providers)
|
212 |
+
logger.info(f"Anime Aesthetic ONNX model loaded with providers: {session.get_providers()}")
|
213 |
+
return session
|
214 |
+
except Exception as e:
|
215 |
+
logger.error(f"Failed to load Anime Aesthetic ONNX model: {e}")
|
216 |
+
return None
|
217 |
|
218 |
+
def preprocess_anime_aesthetic_batch(images_pil: list[Image.Image], target_size: int = 768) -> np.ndarray | None:
|
219 |
+
if not images_pil:
|
220 |
+
return None
|
221 |
+
batch_canvases = []
|
222 |
+
try:
|
223 |
+
for img_pil in images_pil:
|
224 |
+
img_np = np.array(img_pil.convert("RGB")).astype(np.float32) / 255.0
|
225 |
+
h, w = img_np.shape[:2]
|
226 |
+
if h > w:
|
227 |
+
new_h, new_w = target_size, int(target_size * w / h)
|
228 |
+
else:
|
229 |
+
new_h, new_w = int(target_size * h / w), target_size
|
230 |
+
|
231 |
+
resized = cv2.resize(img_np, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
232 |
+
canvas = np.zeros((target_size, target_size, 3), dtype=np.float32)
|
233 |
+
pad_h = (target_size - new_h) // 2
|
234 |
+
pad_w = (target_size - new_w) // 2
|
235 |
+
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
|
236 |
+
batch_canvases.append(canvas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
input_tensor_batch = np.array(batch_canvases, dtype=np.float32) # (N, H, W, C)
|
239 |
+
input_tensor_batch = np.transpose(input_tensor_batch, (0, 3, 1, 2)) # (N, C, H, W)
|
240 |
+
return input_tensor_batch
|
241 |
+
except Exception as e:
|
242 |
+
logger.error(f"Error during Anime Aesthetic preprocessing: {e}")
|
243 |
+
return None
|
244 |
|
245 |
+
#####################################
|
246 |
+
# Image Evaluation Tool #
|
247 |
+
#####################################
|
248 |
|
249 |
+
class ModelManager:
|
250 |
+
def __init__(self, cache_dir: str = None):
|
251 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
252 |
+
logger.info(f"Using device: {self.device}")
|
253 |
+
self.cache_dir = cache_dir
|
254 |
+
self.models = {}
|
255 |
+
self.model_configs = {}
|
256 |
+
self._load_all_models()
|
257 |
+
|
258 |
+
self.processing_queue: asyncio.Queue = asyncio.Queue()
|
259 |
+
self.worker_task = None
|
260 |
+
self._temp_files_to_clean = [] # For CSV files
|
261 |
+
|
262 |
+
def _load_all_models(self):
|
263 |
+
logger.info("Loading Aesthetic Shadow model...")
|
264 |
+
try:
|
265 |
+
self.models["aesthetic_shadow"] = pipeline("image-classification", model="NeoChen1024/aesthetic-shadow-v2-backup", device=0 if self.device == 'cuda' else -1)
|
266 |
+
self.model_configs["aesthetic_shadow"] = {"name": "Aesthetic Shadow", "process_func": self._process_aesthetic_shadow}
|
267 |
+
logger.info("Aesthetic Shadow model loaded.")
|
268 |
+
except Exception as e:
|
269 |
+
logger.error(f"Failed to load Aesthetic Shadow model: {e}")
|
270 |
+
|
271 |
+
logger.info("Loading Waifu Scorer model...")
|
272 |
+
try:
|
273 |
+
ws = WaifuScorer(device=self.device, cache_dir=self.cache_dir, verbose=True)
|
274 |
+
if ws.available:
|
275 |
+
self.models["waifu_scorer"] = ws
|
276 |
+
self.model_configs["waifu_scorer"] = {"name": "Waifu Scorer", "process_func": self._process_waifu_scorer}
|
277 |
+
logger.info("Waifu Scorer model loaded.")
|
278 |
+
else:
|
279 |
+
logger.warning("Waifu Scorer model is not available.")
|
280 |
+
except Exception as e:
|
281 |
+
logger.error(f"Failed to load Waifu Scorer model: {e}")
|
282 |
+
|
283 |
+
logger.info("Loading Aesthetic Predictor V2.5...")
|
284 |
+
try:
|
285 |
+
ap_v25 = AestheticPredictorV2_5_Wrapper(device=self.device)
|
286 |
+
self.models["aesthetic_predictor_v2_5"] = ap_v25
|
287 |
+
self.model_configs["aesthetic_predictor_v2_5"] = {"name": "Aesthetic V2.5", "process_func": self._process_aesthetic_predictor_v2_5}
|
288 |
+
logger.info("Aesthetic Predictor V2.5 loaded.")
|
289 |
+
except Exception as e:
|
290 |
+
logger.error(f"Failed to load Aesthetic Predictor V2.5: {e}")
|
291 |
+
|
292 |
+
logger.info("Loading Anime Aesthetic model...")
|
293 |
+
try:
|
294 |
+
aa_model = load_anime_aesthetic_onnx_model(cache_dir=self.cache_dir)
|
295 |
+
if aa_model:
|
296 |
+
self.models["anime_aesthetic"] = aa_model
|
297 |
+
self.model_configs["anime_aesthetic"] = {"name": "Anime Score", "process_func": self._process_anime_aesthetic}
|
298 |
+
logger.info("Anime Aesthetic model loaded.")
|
299 |
+
else:
|
300 |
+
logger.warning("Anime Aesthetic ONNX model failed to load and will be unavailable.")
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Failed to load Anime Aesthetic model: {e}")
|
303 |
|
304 |
+
logger.info(f"Available models for processing: {list(self.model_configs.keys())}")
|
305 |
+
|
306 |
+
|
307 |
+
async def start_worker_if_not_running(self):
|
308 |
+
if self.worker_task is None or self.worker_task.done():
|
309 |
+
self.worker_task = asyncio.create_task(self._worker())
|
310 |
+
logger.info("Async worker started.")
|
311 |
+
|
312 |
+
async def _worker(self):
|
313 |
+
while True:
|
314 |
+
request = await self.processing_queue.get()
|
315 |
+
if request is None: # Shutdown signal
|
316 |
+
self.processing_queue.task_done()
|
317 |
+
logger.info("Async worker received shutdown signal.")
|
318 |
+
break
|
319 |
+
|
320 |
+
future = request.get('future')
|
321 |
try:
|
322 |
+
if request['type'] == 'run_evaluation_generator':
|
323 |
+
# The generator itself is created here and returned via future
|
324 |
+
# The Gradio callback will iterate over it
|
325 |
+
gen = self.run_evaluation_generator(**request['params'])
|
326 |
+
future.set_result(gen)
|
327 |
+
else:
|
328 |
+
logger.warning(f"Unknown request type in worker: {request.get('type')}")
|
329 |
+
if future: future.set_exception(ValueError("Unknown request type"))
|
330 |
except Exception as e:
|
331 |
+
logger.error(f"Error in worker processing request: {e}", exc_info=True)
|
332 |
+
if future: future.set_exception(e)
|
333 |
+
finally:
|
334 |
+
self.processing_queue.task_done()
|
335 |
+
|
336 |
+
async def submit_evaluation_request(self, file_paths, auto_batch, manual_batch_size, selected_model_keys):
|
337 |
+
await self.start_worker_if_not_running()
|
338 |
+
future = asyncio.Future()
|
339 |
+
request_item = {
|
340 |
+
'type': 'run_evaluation_generator',
|
341 |
+
'params': {
|
342 |
+
'file_paths': file_paths,
|
343 |
+
'auto_batch': auto_batch,
|
344 |
+
'manual_batch_size': manual_batch_size,
|
345 |
+
'selected_model_keys': selected_model_keys,
|
346 |
+
},
|
347 |
+
'future': future
|
348 |
+
}
|
349 |
+
await self.processing_queue.put(request_item)
|
350 |
+
return await future # Future resolves to the async generator
|
351 |
+
|
352 |
+
def auto_tune_batch_size(self, images: list[Image.Image], selected_model_keys: list[str]) -> int:
|
353 |
+
if not images or not selected_model_keys:
|
354 |
+
return 1
|
355 |
+
|
356 |
+
batch_size = 1
|
357 |
+
max_possible_batch = len(images)
|
358 |
+
test_image_pil = [images[0].copy()] # A list containing one PIL image, copy to avoid issues with transforms
|
359 |
+
|
360 |
+
logger.info(f"Auto-tuning batch size with selected models: {selected_model_keys}")
|
361 |
|
362 |
+
optimal_batch_size = 1
|
363 |
+
while batch_size <= max_possible_batch:
|
364 |
+
current_test_batch = test_image_pil * batch_size
|
|
|
365 |
try:
|
366 |
+
logger.debug(f"Testing batch size: {batch_size}")
|
367 |
+
if "aesthetic_shadow" in selected_model_keys and "aesthetic_shadow" in self.models:
|
368 |
+
_ = self.models["aesthetic_shadow"](current_test_batch, batch_size=batch_size)
|
369 |
+
if "waifu_scorer" in selected_model_keys and "waifu_scorer" in self.models:
|
370 |
+
_ = self.models["waifu_scorer"](current_test_batch)
|
371 |
+
if "aesthetic_predictor_v2_5" in selected_model_keys and "aesthetic_predictor_v2_5" in self.models:
|
372 |
+
_ = self.models["aesthetic_predictor_v2_5"].inference(current_test_batch)
|
373 |
+
if "anime_aesthetic" in selected_model_keys and "anime_aesthetic" in self.models:
|
374 |
+
processed_input = preprocess_anime_aesthetic_batch(current_test_batch)
|
375 |
+
if processed_input is None: raise ValueError("Anime aesthetic preprocessing failed for test batch")
|
376 |
+
_ = self.models["anime_aesthetic"].run(None, {"img": processed_input})
|
377 |
+
|
378 |
+
optimal_batch_size = batch_size # This batch size worked
|
379 |
+
if batch_size * 2 > max_possible_batch : # If next step exceeds max, current is best fit
|
380 |
+
if max_possible_batch > batch_size: # Check if we can exactly fit max_possible_batch
|
381 |
+
# Test max_possible_batch one last time if it's > current batch_size and < batch_size*2
|
382 |
+
pass # Current optimal_batch_size is good, or we can check max_possible_batch specifically
|
383 |
+
break
|
384 |
+
batch_size *= 2
|
385 |
+
|
386 |
+
except Exception as e: # Typically torch.cuda.OutOfMemoryError or similar
|
387 |
+
logger.warning(f"Auto-tune failed at batch size {batch_size} for at least one model: {e}")
|
388 |
+
break # Current optimal_batch_size is the largest that worked before this failure
|
389 |
|
390 |
+
# Cap the batch size for very large numbers of images / powerful GPUs
|
391 |
+
final_optimal_batch = min(optimal_batch_size, max_possible_batch, 64)
|
392 |
+
logger.info(f"Optimal batch size determined: {final_optimal_batch}")
|
393 |
+
return max(1, final_optimal_batch)
|
394 |
+
|
395 |
+
|
396 |
+
async def run_evaluation_generator(self, file_paths: list[str], auto_batch: bool,
|
397 |
+
manual_batch_size: int, selected_model_keys: list[str]):
|
398 |
|
399 |
+
log_messages = []
|
400 |
+
def _log(msg):
|
401 |
+
log_messages.append(msg)
|
402 |
+
logger.info(msg)
|
403 |
+
|
404 |
+
_log("Starting image evaluation...")
|
405 |
+
yield {"type": "log_update", "messages": log_messages[-20:]} # Show last 20 logs
|
406 |
+
yield {"type": "progress", "value": 0.0, "desc": "Initiating..."}
|
407 |
+
|
408 |
+
images_pil = []
|
409 |
+
file_names = []
|
410 |
+
for f_path_str in file_paths:
|
411 |
+
try:
|
412 |
+
p = Path(f_path_str)
|
413 |
+
img = Image.open(p).convert("RGB")
|
414 |
+
images_pil.append(img)
|
415 |
+
file_names.append(p.name)
|
416 |
+
_log(f"Loaded image: {p.name}")
|
417 |
+
except Exception as e:
|
418 |
+
_log(f"Error opening {f_path_str}: {e}")
|
419 |
|
420 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
421 |
+
|
422 |
+
if not images_pil:
|
423 |
+
_log("No valid images loaded. Aborting.")
|
424 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
425 |
+
yield {"type": "progress", "value": 1.0, "desc": "No images loaded"}
|
426 |
+
yield {"type": "final_results_state", "data": []} # ensure state is empty
|
427 |
+
return
|
428 |
+
|
429 |
+
actual_batch_size = 1
|
430 |
+
if auto_batch:
|
431 |
+
_log("Auto-tuning batch size...")
|
432 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
433 |
+
yield {"type": "progress", "value": 0.05, "desc": "Auto-tuning batch size..."}
|
434 |
+
actual_batch_size = self.auto_tune_batch_size(images_pil, selected_model_keys)
|
435 |
+
_log(f"Auto-detected batch size: {actual_batch_size}")
|
436 |
+
else:
|
437 |
+
actual_batch_size = int(manual_batch_size) if manual_batch_size > 0 else 1
|
438 |
+
_log(f"Using manual batch size: {actual_batch_size}")
|
439 |
|
440 |
+
yield {"type": "batch_size_update", "value": actual_batch_size}
|
441 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
442 |
+
|
443 |
+
all_results_for_state = [] # Full data for gr.State
|
444 |
+
dataframe_rows_so_far = [] # Data for gr.DataFrame (PIL images, strings, numbers)
|
445 |
+
|
446 |
+
total_images = len(images_pil)
|
447 |
+
processed_count = 0
|
448 |
+
|
449 |
+
for i in range(0, total_images, actual_batch_size):
|
450 |
+
batch_images_pil = images_pil[i:i+actual_batch_size]
|
451 |
+
batch_file_names = file_names[i:i+actual_batch_size]
|
452 |
+
num_in_batch = len(batch_images_pil)
|
453 |
+
_log(f"Processing batch {i//actual_batch_size + 1}/{ (total_images + actual_batch_size -1) // actual_batch_size }: images {i+1} to {i+num_in_batch}")
|
454 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
455 |
+
|
456 |
+
batch_model_scores = {key: [None] * num_in_batch for key in self.model_configs.keys()}
|
457 |
+
|
458 |
+
for model_key in selected_model_keys:
|
459 |
+
if model_key in self.models and model_key in self.model_configs:
|
460 |
+
_log(f" Running {self.model_configs[model_key]['name']} for batch...")
|
461 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
462 |
+
try:
|
463 |
+
scores = await self.model_configs[model_key]['process_func'](batch_images_pil)
|
464 |
+
batch_model_scores[model_key] = scores
|
465 |
+
_log(f" {self.model_configs[model_key]['name']} scores: {scores}")
|
466 |
+
except Exception as e:
|
467 |
+
_log(f" Error processing batch with {self.model_configs[model_key]['name']}: {e}")
|
468 |
+
batch_model_scores[model_key] = [None] * num_in_batch # Ensure it's list of Nones
|
469 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
470 |
|
471 |
+
# Assemble results for this batch
|
472 |
+
current_batch_df_rows = []
|
473 |
+
for j in range(num_in_batch):
|
474 |
+
result_item_state = {'file_name': batch_file_names[j]} # For gr.State
|
|
|
|
|
475 |
|
476 |
+
# For DataFrame: [PIL.Image, filename, score1, score2, ..., final_score]
|
477 |
+
thumbnail = batch_images_pil[j].copy()
|
478 |
+
thumbnail.thumbnail((150, 150)) # Create thumbnail
|
479 |
+
result_item_df_row = [thumbnail, batch_file_names[j]]
|
480 |
+
|
481 |
+
|
482 |
+
current_image_scores = []
|
483 |
+
for model_key in self.model_configs.keys(): # Iterate in defined order for consistency
|
484 |
+
score = batch_model_scores[model_key][j]
|
485 |
+
result_item_state[model_key] = score # For gr.State
|
486 |
+
if model_key in selected_model_keys: # Only add to DF if selected
|
487 |
+
result_item_df_row.append(f"{score:.4f}" if isinstance(score, (float, int)) else "N/A")
|
488 |
+
if isinstance(score, (float, int)) and model_key in selected_model_keys:
|
489 |
+
current_image_scores.append(score)
|
490 |
|
491 |
+
final_score = None
|
492 |
+
if current_image_scores:
|
493 |
+
final_score_val = float(np.mean([s for s in current_image_scores if s is not None]))
|
494 |
+
final_score = float(np.clip(final_score_val, 0.0, 10.0))
|
495 |
+
|
496 |
+
result_item_state['final_score'] = final_score
|
497 |
+
result_item_df_row.append(f"{final_score:.4f}" if final_score is not None else "N/A")
|
498 |
+
|
499 |
+
all_results_for_state.append(result_item_state)
|
500 |
+
current_batch_df_rows.append(result_item_df_row)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
|
502 |
+
dataframe_rows_so_far.extend(current_batch_df_rows)
|
|
|
|
|
|
|
|
|
503 |
|
504 |
+
processed_count += num_in_batch
|
505 |
+
progress_value = processed_count / total_images
|
506 |
+
yield {"type": "partial_results_df_rows", "data": dataframe_rows_so_far, "selected_model_keys": selected_model_keys}
|
507 |
+
yield {"type": "progress", "value": progress_value, "desc": f"Processed {processed_count}/{total_images}"}
|
508 |
+
|
509 |
+
_log("All images processed.")
|
510 |
+
yield {"type": "log_update", "messages": log_messages[-20:]}
|
511 |
+
yield {"type": "progress", "value": 1.0, "desc": "Completed!"}
|
512 |
+
yield {"type": "final_results_state", "data": all_results_for_state}
|
513 |
+
|
514 |
+
|
515 |
+
async def _process_aesthetic_shadow(self, batch_images: list[Image.Image]) -> list[float | None]:
|
516 |
+
model = self.models.get("aesthetic_shadow")
|
517 |
+
if not model: return [None] * len(batch_images)
|
518 |
+
results = model(batch_images, batch_size=len(batch_images)) # Assuming pipeline can take batch_size hint
|
519 |
+
scores = []
|
520 |
+
for res_group in results: # Results might be List[List[Dict]] or List[Dict]
|
521 |
+
# Handle both single image and batch results from pipeline
|
522 |
+
current_res_list = res_group if isinstance(res_group, list) else [res_group]
|
523 |
+
try:
|
524 |
+
hq_score_item = next(p for p in current_res_list if p['label'] == 'hq')
|
525 |
+
score = float(np.clip(hq_score_item['score'] * 10.0, 0.0, 10.0))
|
526 |
+
except (StopIteration, KeyError, TypeError):
|
527 |
+
score = None
|
528 |
+
scores.append(score)
|
529 |
+
return scores
|
530 |
+
|
531 |
+
async def _process_waifu_scorer(self, batch_images: list[Image.Image]) -> list[float | None]:
|
532 |
+
model = self.models.get("waifu_scorer")
|
533 |
+
if not model: return [None] * len(batch_images)
|
534 |
+
raw_scores = model(batch_images)
|
535 |
+
return [float(np.clip(s, 0.0, 10.0)) if s is not None else None for s in raw_scores]
|
536 |
+
|
537 |
+
async def _process_aesthetic_predictor_v2_5(self, batch_images: list[Image.Image]) -> list[float | None]:
|
538 |
+
model = self.models.get("aesthetic_predictor_v2_5")
|
539 |
+
if not model: return [None] * len(batch_images)
|
540 |
+
# Already returns clipped & rounded scores or Nones
|
541 |
+
return model.inference(batch_images)
|
542 |
+
|
543 |
+
async def _process_anime_aesthetic(self, batch_images: list[Image.Image]) -> list[float | None]:
|
544 |
+
model = self.models.get("anime_aesthetic")
|
545 |
+
if not model: return [None] * len(batch_images)
|
546 |
|
547 |
+
input_data = preprocess_anime_aesthetic_batch(batch_images)
|
548 |
+
if input_data is None:
|
549 |
+
return [None] * len(batch_images)
|
550 |
+
|
551 |
+
try:
|
552 |
+
preds = model.run(None, {"img": input_data})[0] # Assuming output is (N, 1) or (N,)
|
553 |
+
scores = [float(np.clip(p.item() * 10.0, 0.0, 10.0)) for p in preds]
|
554 |
+
return scores
|
555 |
+
except Exception as e:
|
556 |
+
logger.error(f"Error during Anime Aesthetic ONNX prediction: {e}")
|
557 |
+
return [None] * len(batch_images)
|
558 |
|
559 |
+
def add_temp_file_for_cleanup(self, file_path: str):
|
560 |
+
self._temp_files_to_clean.append(file_path)
|
561 |
+
|
562 |
+
async def shutdown_worker(self):
|
563 |
+
if self.worker_task and not self.worker_task.done():
|
564 |
+
logger.info("Attempting to shutdown worker...")
|
565 |
+
await self.processing_queue.put(None) # Send shutdown signal
|
566 |
+
try:
|
567 |
+
await asyncio.wait_for(self.worker_task, timeout=5.0)
|
568 |
+
logger.info("Worker task finished.")
|
569 |
+
except asyncio.TimeoutError:
|
570 |
+
logger.warning("Worker task did not finish in time. Cancelling...")
|
571 |
+
self.worker_task.cancel()
|
572 |
+
except Exception as e:
|
573 |
+
logger.error(f"Exception during worker shutdown: {e}")
|
574 |
+
await self.processing_queue.join() # Wait for queue to be fully processed
|
575 |
+
logger.info("Processing queue joined.")
|
576 |
+
self.worker_task = None
|
577 |
+
|
578 |
+
|
579 |
+
def cleanup(self):
|
580 |
+
logger.info("Running cleanup...")
|
581 |
+
# Shut down asyncio worker
|
582 |
+
if self.worker_task:
|
583 |
+
# If running in a context where an event loop is already running
|
584 |
+
if asyncio.get_event_loop().is_running():
|
585 |
+
asyncio.create_task(self.shutdown_worker()) # schedule it
|
586 |
+
else: # If no loop, run it
|
587 |
+
try:
|
588 |
+
asyncio.run(self.shutdown_worker())
|
589 |
+
except RuntimeError as e: # Handles "cannot be called when another loop is running"
|
590 |
+
logger.error(f"RuntimeError during cleanup's shutdown_worker: {e}. May need manual loop management.")
|
591 |
+
|
592 |
+
# Clean up temporary CSV files
|
593 |
+
for f_path in self_temp_files_to_clean:
|
594 |
+
try:
|
595 |
+
os.remove(f_path)
|
596 |
+
logger.info(f"Removed temp file: {f_path}")
|
597 |
+
except OSError as e:
|
598 |
+
logger.error(f"Error removing temp file {f_path}: {e}")
|
599 |
+
self._temp_files_to_clean.clear()
|
600 |
+
logger.info("Cleanup finished.")
|
601 |
+
|
602 |
+
|
603 |
+
#####################################
|
604 |
+
# Interface #
|
605 |
+
#####################################
|
606 |
+
|
607 |
+
# Initialize ModelManager once
|
608 |
+
model_manager = ModelManager(cache_dir=".model_cache")
|
609 |
|
610 |
def create_interface():
|
611 |
+
# Define model choices based on ModelManager's loaded models
|
612 |
+
# Filter out models that failed to load
|
613 |
+
AVAILABLE_MODEL_KEYS = [k for k in model_manager.model_configs.keys() if k in model_manager.models]
|
614 |
+
AVAILABLE_MODEL_NAMES_MAP = {k: model_manager.model_configs[k]['name'] for k in AVAILABLE_MODEL_KEYS}
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
|
616 |
+
# [(display_name, value_key), ...] for CheckboxGroup
|
617 |
+
MODEL_CHOICES_FOR_CHECKBOX = [(AVAILABLE_MODEL_NAMES_MAP[k], k) for k in AVAILABLE_MODEL_KEYS]
|
618 |
+
|
619 |
+
|
620 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo:
|
621 |
gr.Markdown("""
|
622 |
+
# Comprehensive Image Evaluation Tool (Refactored)
|
623 |
+
Upload images to evaluate them using multiple aesthetic and quality prediction models.
|
624 |
+
Results are displayed in a sortable table with image previews.
|
|
|
625 |
""")
|
626 |
+
|
627 |
+
# Stores full processing results (list of dicts)
|
628 |
+
# Dict keys: 'file_name', 'final_score', and all model_keys with their scores
|
629 |
+
# This state is the source of truth for regenerating table and CSV
|
630 |
+
results_state = gr.State([])
|
631 |
+
# Stores current list of selected model keys (e.g., ['waifu_scorer', 'anime_aesthetic'])
|
632 |
+
selected_models_state = gr.State(AVAILABLE_MODEL_KEYS)
|
633 |
+
# Stores current log messages as a list
|
634 |
+
log_messages_state = gr.State([])
|
635 |
+
|
636 |
with gr.Row():
|
637 |
+
with gr.Column(scale=1): # Inputs
|
638 |
+
input_images = gr.Files(label="Upload Images", file_count="multiple", type="filepath")
|
|
|
|
|
|
|
|
|
639 |
|
640 |
+
if not MODEL_CHOICES_FOR_CHECKBOX:
|
641 |
+
gr.Markdown("## No models loaded successfully. Please check logs.")
|
642 |
+
model_checkboxes = None # No models, no checkbox
|
643 |
+
else:
|
644 |
+
model_checkboxes = gr.CheckboxGroup(
|
645 |
+
choices=MODEL_CHOICES_FOR_CHECKBOX,
|
646 |
+
label="Select Models",
|
647 |
+
value=AVAILABLE_MODEL_KEYS, # Default to all available selected
|
648 |
+
info="Choose models for evaluation. Final score is an average of selected model scores."
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
)
|
650 |
+
|
651 |
+
auto_batch_checkbox = gr.Checkbox(label="Automatic Batch Size Detection", value=True)
|
652 |
+
batch_size_input = gr.Number(label="Manual Batch Size", value=8, minimum=1, precision=0, interactive=False) # Interactive based on auto_batch_checkbox
|
653 |
|
654 |
+
process_btn = gr.Button("Evaluate Images", variant="primary", interactive=bool(MODEL_CHOICES_FOR_CHECKBOX))
|
655 |
+
clear_btn = gr.Button("Clear Results")
|
656 |
+
download_csv_btn = gr.Button("Download Results as CSV", variant="secondary")
|
657 |
+
|
658 |
+
with gr.Column(scale=3): # Outputs
|
659 |
+
progress_tracker = gr.Progress(label="Processing Progress")
|
660 |
+
log_output = gr.Textbox(label="Logs", lines=10, max_lines=20, interactive=False, autoscroll=True)
|
|
|
|
|
|
|
|
|
|
|
661 |
|
662 |
+
# Initial headers for DataFrame; will be updated dynamically
|
663 |
+
initial_df_headers = ['Image', 'File Name'] + [AVAILABLE_MODEL_NAMES_MAP[k] for k in AVAILABLE_MODEL_KEYS] + ['Final Score']
|
664 |
+
results_dataframe = gr.DataFrame(
|
665 |
+
headers=initial_df_headers,
|
666 |
+
datatype=['pil'] + ['str'] * (len(initial_df_headers) -1) , # Image + strings for scores
|
667 |
label="Evaluation Results",
|
668 |
+
interactive=True, # Enables sorting by clicking headers
|
669 |
+
row_count=(10, "dynamic"),
|
670 |
+
col_count=(len(initial_df_headers), "fixed"),
|
671 |
+
wrap=True,
|
672 |
)
|
673 |
+
# Hidden file component for download trigger
|
674 |
+
download_file_provider = gr.File(label="Download Link", visible=False)
|
675 |
+
|
676 |
+
# --- Callback Functions ---
|
677 |
+
def update_batch_size_interactive(auto_detect_enabled: bool):
|
678 |
+
return gr.Number.update(interactive=not auto_detect_enabled)
|
679 |
+
|
680 |
+
async def handle_process_images_ui(
|
681 |
+
files_list: list[gr. rýchle.TempFile] | None, # Gradio File objects
|
682 |
+
auto_batch_flag: bool,
|
683 |
+
manual_batch_val: int,
|
684 |
+
selected_model_keys_from_ui: list[str],
|
685 |
+
# Gradio will pass the gr.Progress instance automatically by type hinting
|
686 |
+
# Ensure the name 'progress_tracker_instance' matches an output component if you want to update it by dict key
|
687 |
+
# Otherwise, use the positional argument `progress`
|
688 |
+
progress_instance: gr.Progress
|
689 |
+
):
|
690 |
+
if not files_list:
|
691 |
+
yield {
|
692 |
+
log_output: "No files uploaded. Please select images first.",
|
693 |
+
progress_tracker: gr.Progress(0.0, "Idle. No files."),
|
694 |
+
results_dataframe: gr.DataFrame.update(value=None), # Clear table
|
695 |
+
results_state: [],
|
696 |
+
selected_models_state: selected_model_keys_from_ui,
|
697 |
+
log_messages_state: ["No files uploaded. Please select images first."]
|
698 |
+
}
|
699 |
+
return
|
700 |
+
|
701 |
+
# Update selected_models_state right away
|
702 |
+
yield { selected_models_state: selected_model_keys_from_ui, log_messages_state: [] } # Clear logs state
|
703 |
+
|
704 |
+
# Convert Gradio TempFile objects to string paths
|
705 |
+
actual_file_paths = [f.name for f in files_list]
|
706 |
|
707 |
+
current_log_list = [] # Local log accumulator for this run
|
708 |
+
|
709 |
+
# Call the ModelManager's generator
|
710 |
+
# The progress_instance is implicitly passed by Gradio to this function
|
711 |
+
# The ModelManager generator will then use it via its own parameter `progress_tracker_instance`
|
712 |
|
713 |
+
# Need to get an async generator from model_manager
|
714 |
+
evaluation_generator = await model_manager.submit_evaluation_request(
|
715 |
+
actual_file_paths, auto_batch_flag, manual_batch_val, selected_model_keys_from_ui
|
|
|
|
|
|
|
716 |
)
|
717 |
|
718 |
+
dataframe_update_value = None
|
719 |
+
final_results_for_app_state = []
|
720 |
+
|
721 |
+
async for event in evaluation_generator:
|
722 |
+
outputs_to_yield = {}
|
723 |
+
if event["type"] == "log_update":
|
724 |
+
current_log_list = event["messages"]
|
725 |
+
outputs_to_yield[log_output] = "\n".join(current_log_list)
|
726 |
+
elif event["type"] == "progress":
|
727 |
+
# Update progress bar directly using the passed instance
|
728 |
+
progress_instance(event["value"], desc=event.get("desc"))
|
729 |
+
elif event["type"] == "batch_size_update":
|
730 |
+
outputs_to_yield[batch_size_input] = gr.Number.update(value=event["value"])
|
731 |
+
elif event["type"] == "partial_results_df_rows":
|
732 |
+
# data is list of lists for DataFrame rows
|
733 |
+
# selected_model_keys used to generate current headers
|
734 |
+
dynamic_headers = ['Image', 'File Name'] + \
|
735 |
+
[AVAILABLE_MODEL_NAMES_MAP[k] for k in event["selected_model_keys"] if k in AVAILABLE_MODEL_NAMES_MAP] + \
|
736 |
+
['Final Score']
|
737 |
+
dataframe_update_value = pd.DataFrame(event["data"], columns=dynamic_headers) if event["data"] else None
|
738 |
+
outputs_to_yield[results_dataframe] = gr.DataFrame.update(value=dataframe_update_value, headers=dynamic_headers)
|
739 |
+
|
740 |
+
elif event["type"] == "final_results_state":
|
741 |
+
final_results_for_app_state = event["data"]
|
742 |
+
|
743 |
+
if outputs_to_yield: # Only yield if there's something to update
|
744 |
+
yield outputs_to_yield
|
745 |
|
746 |
+
# Final updates after generator is exhausted
|
747 |
+
yield {
|
748 |
+
results_state: final_results_for_app_state,
|
749 |
+
log_messages_state: current_log_list, # Save final logs
|
750 |
+
# DataFrame should be up-to-date from the last partial_results_df_rows
|
751 |
+
}
|
752 |
+
|
753 |
+
|
754 |
+
def handle_clear_results_ui():
|
755 |
+
# Clear files, logs, table, progress, and internal states
|
756 |
+
return {
|
757 |
+
input_images: None,
|
758 |
+
log_output: "Results cleared.",
|
759 |
+
results_dataframe: gr.DataFrame.update(value=None, headers=initial_df_headers), # Reset with initial headers
|
760 |
+
progress_tracker: gr.Progress(0.0, "Idle"),
|
761 |
+
results_state: [],
|
762 |
+
# selected_models_state: AVAILABLE_MODEL_KEYS, # Optionally reset model selection
|
763 |
+
batch_size_input: gr.Number.update(value=8), # Reset batch size
|
764 |
+
log_messages_state: ["Results cleared."]
|
765 |
+
}
|
766 |
|
767 |
+
# Function to re-render DataFrame and update states when model selection changes
|
768 |
+
def handle_model_selection_or_state_change_ui(
|
769 |
+
current_selected_keys: list[str],
|
770 |
+
current_full_results: list[dict]
|
771 |
+
):
|
772 |
+
if not current_full_results: # No data to process
|
773 |
+
dynamic_headers = ['Image', 'File Name'] + \
|
774 |
+
[AVAILABLE_MODEL_NAMES_MAP[k] for k in current_selected_keys if k in AVAILABLE_MODEL_NAMES_MAP] + \
|
775 |
+
['Final Score']
|
776 |
+
return {
|
777 |
+
results_dataframe: gr.DataFrame.update(value=None, headers=dynamic_headers),
|
778 |
+
selected_models_state: current_selected_keys,
|
779 |
+
results_state: current_full_results # pass through if empty
|
780 |
+
}
|
781 |
+
|
782 |
+
new_df_rows = []
|
783 |
+
updated_full_results = []
|
784 |
+
|
785 |
+
for res_item_dict in current_full_results:
|
786 |
+
# Recalculate final score based on new selection
|
787 |
+
scores_to_avg = []
|
788 |
+
for mk in current_selected_keys:
|
789 |
+
if mk in res_item_dict and isinstance(res_item_dict[mk], (float, int)):
|
790 |
+
scores_to_avg.append(res_item_dict[mk])
|
791 |
+
|
792 |
+
new_final_score = None
|
793 |
+
if scores_to_avg:
|
794 |
+
new_final_score_val = float(np.mean(scores_to_avg))
|
795 |
+
new_final_score = float(np.clip(new_final_score_val, 0.0, 10.0))
|
796 |
+
|
797 |
+
# Update the item in results_state
|
798 |
+
res_item_dict['final_score'] = new_final_score
|
799 |
+
updated_full_results.append(res_item_dict.copy()) # Store updated item
|
800 |
+
|
801 |
+
# Prepare row for DataFrame
|
802 |
+
# Find the corresponding image (this assumes images are not stored in results_state, which they aren't)
|
803 |
+
# For simplicity, we'll need to re-generate thumbnails if we want them in this update path.
|
804 |
+
# A robust way: results_state stores paths or minimal data to re-fetch/re-create thumbnails.
|
805 |
+
# Current implementation of `run_evaluation_generator` directly yields DF rows with PIL images.
|
806 |
+
# If `handle_model_selection_change_ui` is to re-generate the DF from `results_state`,
|
807 |
+
# `results_state` items would need to include enough info for `Image.open` and `thumbnail`.
|
808 |
+
# This is a complex part if we want perfect dynamic DF regeneration with images.
|
809 |
+
# For now, let's assume `results_state` stores `PIL.Image` thumbnails if this path is critical.
|
810 |
+
# The `run_evaluation_generator` stores dicts without PIL image objects in `all_results_for_state`.
|
811 |
+
# This means `handle_model_selection_change_ui` cannot easily reconstruct the 'Image' column.
|
812 |
+
#
|
813 |
+
# SIMPLIFICATION: When model selection changes, we only update scores in the existing DataFrame
|
814 |
+
# if possible, or we re-calculate and re-populate. The current code path re-creates rows.
|
815 |
+
# To do this properly, `results_state` items should perhaps include original image path or cached thumbnail.
|
816 |
+
#
|
817 |
+
# Let's make results_state store {'file_path': ..., 'thumbnail_pil': ..., scores...}
|
818 |
+
# This needs `run_evaluation_generator` to save file_path and thumbnail_pil to `all_results_for_state`.
|
819 |
+
# Assume `results_state` items now contain 'thumbnail_pil' and other scores.
|
820 |
+
|
821 |
+
# If 'thumbnail_pil' is not in res_item_dict (because it wasn't saved that way), this will fail.
|
822 |
+
# This path requires results_state to contain PIL image data for the 'Image' column.
|
823 |
+
# The current 'run_evaluation_generator' does not save PIL images into `all_results_for_state`.
|
824 |
+
# It only creates them for immediate DataFrame update.
|
825 |
+
# This function needs to be re-thought if full DF reconstruction with images is needed here.
|
826 |
+
|
827 |
+
# Let's assume results_state IS NOT used to rebuild the image column.
|
828 |
+
# The change handler for model_checkboxes will mostly affect the *calculation* of final_score
|
829 |
+
# and *visibility* of columns if we were dynamically adding/removing them.
|
830 |
+
# Gradio's DataFrame doesn't easily hide/show columns; we change headers and data.
|
831 |
+
|
832 |
+
# Rebuild row for DF:
|
833 |
+
df_row = [res_item_dict.get('thumbnail_pil_placeholder', "N/A"), res_item_dict['file_name']]
|
834 |
+
for mk_cfg in AVAILABLE_MODEL_KEYS: # All possible models to maintain column order
|
835 |
+
if mk_cfg in current_selected_keys: # If this model is currently selected for display
|
836 |
+
score = res_item_dict.get(mk_cfg)
|
837 |
+
df_row.append(f"{score:.4f}" if isinstance(score, (float, int)) else "N/A")
|
838 |
+
# If not selected, this column won't even be in dynamic_headers.
|
839 |
+
df_row.append(f"{new_final_score:.4f}" if new_final_score is not None else "N/A")
|
840 |
+
new_df_rows.append(df_row)
|
841 |
|
842 |
+
dynamic_headers = ['Image', 'File Name'] + \
|
843 |
+
[AVAILABLE_MODEL_NAMES_MAP[k] for k in current_selected_keys if k in AVAILABLE_MODEL_NAMES_MAP] + \
|
844 |
+
['Final Score']
|
845 |
|
846 |
+
import pandas as pd
|
847 |
+
df_value = pd.DataFrame(new_df_rows, columns=dynamic_headers) if new_df_rows else None
|
848 |
|
849 |
+
return {
|
850 |
+
results_dataframe: gr.DataFrame.update(value=df_value, headers=dynamic_headers),
|
851 |
+
selected_models_state: current_selected_keys, # Persist the new selection
|
852 |
+
results_state: updated_full_results # Persist updated scores
|
853 |
+
}
|
854 |
+
|
855 |
+
|
856 |
+
def handle_download_csv_ui(current_full_results: list[dict], current_selected_keys: list[str]):
|
857 |
+
if not current_full_results:
|
858 |
+
# Optionally, send a message to log_output if desired using yield
|
859 |
+
return gr.File.update(value=None, visible=False)
|
860 |
+
|
861 |
+
# Use StringIO to build CSV in memory
|
862 |
+
csv_output = StringIO()
|
863 |
+
# Define fieldnames: Filename, selected model scores, Final Score
|
864 |
+
fieldnames = ['File Name'] + \
|
865 |
+
[AVAILABLE_MODEL_NAMES_MAP[k] for k in current_selected_keys if k in AVAILABLE_MODEL_NAMES_MAP] + \
|
866 |
+
['Final Score']
|
867 |
|
868 |
+
writer = csv.DictWriter(csv_output, fieldnames=fieldnames, extrasaction='ignore')
|
869 |
+
writer.writeheader()
|
870 |
+
|
871 |
+
for res_item in current_full_results:
|
872 |
+
row_to_write = {'File Name': res_item['file_name']}
|
873 |
+
final_score_val = res_item.get('final_score') # This should be up-to-date from results_state
|
874 |
+
row_to_write['Final Score'] = f"{final_score_val:.4f}" if final_score_val is not None else "N/A"
|
875 |
+
|
876 |
+
for key in current_selected_keys:
|
877 |
+
if key in AVAILABLE_MODEL_NAMES_MAP: # ensure it's a valid model key
|
878 |
+
model_display_name = AVAILABLE_MODEL_NAMES_MAP[key]
|
879 |
+
score_val = res_item.get(key)
|
880 |
+
row_to_write[model_display_name] = f"{score_val:.4f}" if isinstance(score_val, (float, int)) else "N/A"
|
881 |
+
writer.writerow(row_to_write)
|
882 |
|
883 |
+
csv_content = csv_output.getvalue()
|
884 |
+
csv_output.close()
|
885 |
+
|
886 |
+
# Save to a temporary file that Gradio can serve
|
887 |
+
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv", encoding='utf-8') as tmp_file:
|
888 |
+
tmp_file.write(csv_content)
|
889 |
+
temp_file_path = tmp_file.name
|
890 |
|
891 |
+
model_manager.add_temp_file_for_cleanup(temp_file_path) # Register for cleanup
|
892 |
+
|
893 |
+
return gr.File.update(value=temp_file_path, visible=True, label="results.csv")
|
894 |
+
|
895 |
+
|
896 |
+
# --- Wire up components ---
|
897 |
+
auto_batch_checkbox.change(
|
898 |
+
fn=update_batch_size_interactive,
|
899 |
+
inputs=[auto_batch_checkbox],
|
900 |
+
outputs=[batch_size_input]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
901 |
)
|
902 |
+
|
903 |
+
# Check if model_checkboxes exists (i.e., models loaded)
|
904 |
+
if model_checkboxes:
|
905 |
+
process_btn.click(
|
906 |
+
fn=handle_process_images_ui,
|
907 |
+
inputs=[input_images, auto_batch_checkbox, batch_size_input, model_checkboxes],
|
908 |
+
outputs=[
|
909 |
+
log_output, progress_tracker, results_dataframe, batch_size_input,
|
910 |
+
results_state, selected_models_state, log_messages_state # Ensure all yielded components are listed
|
911 |
+
]
|
912 |
+
)
|
913 |
+
# When model selection changes, update the displayed table and internal states
|
914 |
+
model_checkboxes.change(
|
915 |
+
fn=handle_model_selection_or_state_change_ui,
|
916 |
+
inputs=[model_checkboxes, results_state], # Takes current selection and full results data
|
917 |
+
outputs=[results_dataframe, selected_models_state, results_state]
|
918 |
+
)
|
919 |
+
|
920 |
clear_btn.click(
|
921 |
+
fn=handle_clear_results_ui,
|
922 |
+
outputs=[
|
923 |
+
input_images, log_output, results_dataframe, progress_tracker,
|
924 |
+
results_state, batch_size_input, log_messages_state # model_checkboxes could be reset too if needed
|
925 |
+
]
|
926 |
)
|
927 |
|
928 |
+
download_csv_btn.click(
|
929 |
+
fn=handle_download_csv_ui,
|
930 |
+
inputs=[results_state, selected_models_state], # Use current results and selected models for CSV
|
931 |
+
outputs=[download_file_provider]
|
932 |
)
|
933 |
+
|
934 |
+
# Initial setup on demo load
|
935 |
+
async def initial_load_setup():
|
936 |
+
await model_manager.start_worker_if_not_running() # Start async worker
|
937 |
+
# Set initial state for selected_models_state based on default checkbox values
|
938 |
+
# This is a bit of a workaround if direct binding isn't available for initial state from component value
|
939 |
+
return {selected_models_state: AVAILABLE_MODEL_KEYS, log_messages_state: ["Application loaded. Ready."]}
|
940 |
+
|
941 |
+
demo.load(
|
942 |
+
fn=initial_load_setup,
|
943 |
+
outputs=[selected_models_state, log_messages_state]
|
944 |
+
)
|
945 |
+
# Register cleanup function
|
946 |
+
demo.unload(model_manager.cleanup)
|
947 |
+
|
948 |
+
|
949 |
gr.Markdown("""
|
950 |
+
### Notes
|
951 |
+
- **Model Selection**: Dynamically choose models for evaluation. The 'Final Score' and displayed columns update accordingly.
|
952 |
+
- **Native Table**: Results are shown in a native Gradio DataFrame, allowing sorting by clicking column headers.
|
953 |
+
- **Batching**: Automatic batch size detection is enabled by default. You can switch to manual batch sizing.
|
954 |
+
- **CSV Export**: Download the current results (respecting selected models for columns) as a CSV file.
|
955 |
+
- **Asynchronous Processing**: Image evaluation runs in the background, providing live updates for logs and progress.
|
|
|
|
|
|
|
|
|
956 |
""")
|
|
|
957 |
return demo
|
958 |
|
959 |
|
960 |
if __name__ == "__main__":
|
961 |
+
# For proper MLP Safetensor loading with adjusted keys, ensure 'safetensors' is installed.
|
962 |
+
# For WaifuScorer, ensure 'openai-clip' is installed.
|
963 |
+
# For ONNX models, 'onnxruntime' or 'onnxruntime-gpu'.
|
964 |
+
# For general Hugging Face model loading, 'transformers'.
|
965 |
+
# OpenCV ('cv2') for image manipulation: 'opencv-python'.
|
966 |
+
# And of course 'torch', 'numpy', 'Pillow', 'gradio'.
|
967 |
+
|
968 |
+
# Create a dummy aesthetic_predictor_v2_5.py if it doesn't exist for the stub to work
|
969 |
+
# (or ensure the real one is present)
|
970 |
+
if not Path("aesthetic_predictor_v2_5.py").exists():
|
971 |
+
stub_content = """
|
972 |
+
# Placeholder for aesthetic_predictor_v2_5.py
|
973 |
+
# This file needs to contain the actual 'convert_v2_5_from_siglip' function.
|
974 |
+
# The main script uses a basic stub if this file is missing or fails to import.
|
975 |
+
# print("aesthetic_predictor_v2_5.py placeholder executed")
|
976 |
+
def convert_v2_5_from_siglip(*args, **kwargs):
|
977 |
+
raise NotImplementedError("This is a placeholder. Implement convert_v2_5_from_siglip here or ensure the main script's stub is used.")
|
978 |
+
"""
|
979 |
+
# Only write if you are sure, or better, let user handle this dependency.
|
980 |
+
# For this exercise, we assume the main script's internal stub is sufficient if the file is missing.
|
981 |
+
pass
|
982 |
+
|
983 |
+
|
984 |
+
# It's important that the ModelManager is initialized before create_interface() is called,
|
985 |
+
# as create_interface() relies on model_manager.model_configs.
|
986 |
+
# This is already handled by placing `model_manager = ModelManager()` globally.
|
987 |
+
|
988 |
+
app_interface = create_interface()
|
989 |
+
app_interface.queue().launch(debug=True, share=False) # Enable queue for async operations
|
990 |
+
|
991 |
+
# Ensure cleanup is called on exit if demo.unload isn't fully effective in all environments
|
992 |
+
import atexit
|
993 |
+
atexit.register(model_manager.cleanup)
|