Update app.py
Browse files
app.py
CHANGED
@@ -1,541 +1,518 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
|
|
|
|
5 |
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
-
import pandas as pd
|
9 |
import torch
|
10 |
import onnxruntime as rt
|
11 |
from PIL import Image
|
12 |
import gradio as gr
|
13 |
from transformers import pipeline
|
14 |
from huggingface_hub import hf_hub_download
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
try:
|
20 |
-
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
|
21 |
-
except ImportError:
|
22 |
-
print("Warning: aesthetic_predictor_v2_5.py not found. Using a mock for AestheticPredictorV25.")
|
23 |
-
def convert_v2_5_from_siglip(low_cpu_mem_usage=True, trust_remote_code=True):
|
24 |
-
# This is a mock.
|
25 |
-
mock_model_output = torch.randn(1, 1) # Represents logits for a single image
|
26 |
-
|
27 |
-
class MockModel(torch.nn.Module):
|
28 |
-
def __init__(self):
|
29 |
-
super().__init__()
|
30 |
-
self.dummy_param = torch.nn.Parameter(torch.empty(0)) # To have a device property
|
31 |
-
|
32 |
-
def forward(self, pixel_values):
|
33 |
-
# Return something that has .logits
|
34 |
-
# Batch size from pixel_values
|
35 |
-
batch_size = pixel_values.size(0)
|
36 |
-
# Create a namedtuple or simple class to mimic HuggingFace output object with .logits
|
37 |
-
class Output:
|
38 |
-
pass
|
39 |
-
output = Output()
|
40 |
-
output.logits = torch.randn(batch_size, 1).to(self.dummy_param.device)
|
41 |
-
return output
|
42 |
-
|
43 |
-
def to(self, device_or_dtype): # Simplified .to()
|
44 |
-
if isinstance(device_or_dtype, torch.dtype):
|
45 |
-
# In a real scenario, handle dtype conversion
|
46 |
-
pass
|
47 |
-
elif isinstance(device_or_dtype, str) or isinstance(device_or_dtype, torch.device):
|
48 |
-
self.dummy_param = torch.nn.Parameter(torch.empty(0, device=device_or_dtype)) # Move dummy param to device
|
49 |
-
return self
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
super().__init__()
|
72 |
-
self.input_size = input_size
|
73 |
-
self.layers = torch.nn.Sequential(
|
74 |
-
torch.nn.Linear(self.input_size, 2048), torch.nn.ReLU(),
|
75 |
-
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.3),
|
76 |
-
torch.nn.Linear(2048, 512), torch.nn.ReLU(),
|
77 |
-
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.3),
|
78 |
-
torch.nn.Linear(512, 256), torch.nn.ReLU(),
|
79 |
-
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.2),
|
80 |
-
torch.nn.Linear(256, 128), torch.nn.ReLU(),
|
81 |
-
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.1),
|
82 |
-
torch.nn.Linear(128, 32), torch.nn.ReLU(),
|
83 |
-
torch.nn.Linear(32, 1)
|
84 |
)
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
self._load_model()
|
97 |
-
|
98 |
-
def _load_model(self): raise NotImplementedError
|
99 |
-
def predict(self, images: list[Image.Image]) -> list[float | None]: raise NotImplementedError
|
100 |
-
|
101 |
-
def __call__(self, images: list[Image.Image]) -> list[float | None]:
|
102 |
-
if not self.model:
|
103 |
-
if self.verbose: print(f"{self.model_display_name} model not loaded.")
|
104 |
return [None] * len(images)
|
105 |
-
|
106 |
-
rgb_images = [img.convert("RGB") if img.mode != "RGB" else img for img in images]
|
107 |
-
return self.predict(rgb_images)
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
def _load_model(self):
|
111 |
try:
|
112 |
import clip
|
113 |
-
model_hf_path = "Eugeoter/waifu-scorer-v3/model.pth" # Default path
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
self.mlp = MLP(input_size=768) # ViT-L/14 embedding size
|
120 |
-
if actual_model_path.endswith(".safetensors"):
|
121 |
-
from safetensors.torch import load_file
|
122 |
-
state_dict = load_file(actual_model_path, device=self.device)
|
123 |
-
else:
|
124 |
-
state_dict = torch.load(actual_model_path, map_location=self.device)
|
125 |
self.mlp.load_state_dict(state_dict)
|
126 |
self.mlp.to(self.device).eval()
|
127 |
-
|
128 |
-
|
129 |
-
self.
|
130 |
-
self.
|
131 |
-
except ImportError:
|
132 |
-
if self.verbose: print("CLIP library not found. WaifuScorer will not be available.")
|
133 |
except Exception as e:
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
@torch.no_grad()
|
137 |
-
def
|
138 |
-
if not self.
|
139 |
-
|
140 |
-
original_n = len(images)
|
141 |
-
processed_images = list(images)
|
142 |
-
if original_n == 1: processed_images.append(images[0]) # Duplicate for single image batch
|
143 |
|
144 |
try:
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
150 |
|
151 |
-
predictions = self.mlp(im_emb)
|
152 |
scores = predictions.clamp(0, 10).cpu().numpy().flatten().tolist()
|
153 |
-
return scores
|
154 |
except Exception as e:
|
155 |
-
|
156 |
-
return [None] *
|
157 |
|
158 |
-
class AestheticPredictorV25(BaseImageScorer):
|
159 |
-
def _load_model(self):
|
160 |
-
try:
|
161 |
-
if self.verbose: print(f"Loading {self.model_display_name}...")
|
162 |
-
self.model, self.preprocessor = convert_v2_5_from_siglip(low_cpu_mem_usage=True, trust_remote_code=True)
|
163 |
-
# Model's .to() method should handle dtype (e.g. bfloat16) and device.
|
164 |
-
self.model = self.model.to(self.device)
|
165 |
-
if self.device == 'cuda' and torch.cuda.is_available() and hasattr(self.model, 'to'): # some models might need explicit dtype
|
166 |
-
self.model = self.model.to(torch.bfloat16)
|
167 |
-
self.model.eval()
|
168 |
-
except Exception as e:
|
169 |
-
if self.verbose: print(f"Error loading {self.model_display_name}: {e}")
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
@torch.no_grad()
|
172 |
-
def
|
173 |
-
if not self.model or not self.preprocessor: return [None] * len(images)
|
174 |
try:
|
175 |
-
|
176 |
-
pixel_values =
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
output = self.model(pixel_values)
|
181 |
-
scores_tensor = output.logits if hasattr(output, 'logits') else output
|
182 |
-
scores = scores_tensor.squeeze().float().cpu().numpy()
|
183 |
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
186 |
except Exception as e:
|
187 |
-
|
188 |
return [None] * len(images)
|
189 |
|
190 |
-
class AnimeAestheticONNX(BaseImageScorer):
|
191 |
-
def _load_model(self):
|
192 |
-
try:
|
193 |
-
if self.verbose: print(f"Loading {self.model_display_name} (ONNX)...")
|
194 |
-
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx", cache_dir=CACHE_DIR)
|
195 |
-
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if self.device == 'cuda' else ['CPUExecutionProvider']
|
196 |
-
valid_providers = [p for p in providers if p in rt.get_available_providers()] or ['CPUExecutionProvider']
|
197 |
-
self.model = rt.InferenceSession(model_path, providers=valid_providers)
|
198 |
-
if self.verbose: print(f"{self.model_display_name} loaded with providers: {self.model.get_providers()}")
|
199 |
-
except Exception as e:
|
200 |
-
if self.verbose: print(f"Error loading {self.model_display_name}: {e}")
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
canvas = np.zeros((s, s, 3), dtype=np.float32) # Fill with black
|
212 |
-
pad_h, pad_w = (s - new_h) // 2, (s - new_w) // 2
|
213 |
-
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
|
214 |
-
return np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
|
215 |
-
|
216 |
-
def predict(self, images: list[Image.Image]) -> list[float | None]:
|
217 |
-
if not self.model: return [None] * len(images)
|
218 |
scores = []
|
219 |
for img in images:
|
220 |
try:
|
221 |
-
|
222 |
-
|
223 |
-
scores.append(float(np.clip(pred * 10.0, 0.0, 10.0)))
|
224 |
except Exception as e:
|
225 |
-
|
226 |
scores.append(None)
|
227 |
return scores
|
228 |
-
|
229 |
-
class AestheticShadowPipeline(BaseImageScorer):
|
230 |
-
def _load_model(self):
|
231 |
-
try:
|
232 |
-
if self.verbose: print(f"Loading {self.model_display_name} pipeline...")
|
233 |
-
pipeline_device = 0 if self.device == 'cuda' else -1
|
234 |
-
self.model = pipeline("image-classification", model="NeoChen1024/aesthetic-shadow-v2-backup", device=pipeline_device)
|
235 |
-
except Exception as e:
|
236 |
-
if self.verbose: print(f"Error loading {self.model_display_name}: {e}")
|
237 |
-
|
238 |
-
def predict(self, images: list[Image.Image]) -> list[float | None]:
|
239 |
-
if not self.model: return [None] * len(images)
|
240 |
-
scores = []
|
241 |
-
try:
|
242 |
-
pipeline_results = self.model(images, top_k=None) # Assuming pipeline handles batching
|
243 |
-
|
244 |
-
# Ensure consistent output structure from pipeline (List[List[Dict]] vs List[Dict])
|
245 |
-
if images and pipeline_results and not isinstance(pipeline_results[0], list):
|
246 |
-
pipeline_results = [pipeline_results]
|
247 |
-
|
248 |
-
for res_set in pipeline_results:
|
249 |
-
try:
|
250 |
-
hq_score_dict = next(p for p in res_set if p['label'] == 'hq')
|
251 |
-
scores.append(float(np.clip(hq_score_dict['score'] * 10.0, 0.0, 10.0)))
|
252 |
-
except (StopIteration, TypeError, KeyError): scores.append(None)
|
253 |
-
except Exception as e:
|
254 |
-
if self.verbose: print(f"Error during {self.model_display_name} prediction: {e}")
|
255 |
-
return [None] * len(images) # All None if batch fails
|
256 |
-
return scores
|
257 |
-
|
258 |
-
# --- Model Management ---
|
259 |
-
MODEL_REGISTRY = {
|
260 |
-
"aesthetic_shadow": {"class": AestheticShadowPipeline, "name": "Aesthetic Shadow"},
|
261 |
-
"waifu_scorer": {"class": WaifuScorerModel, "name": "Waifu Scorer"},
|
262 |
-
"aesthetic_predictor_v2_5": {"class": AestheticPredictorV25, "name": "Aesthetic V2.5"},
|
263 |
-
"anime_aesthetic": {"class": AnimeAestheticONNX, "name": "Anime Score"},
|
264 |
-
}
|
265 |
-
LOADED_MODELS = {} # Populated at startup
|
266 |
-
|
267 |
-
def initialize_models(verbose_loading=False):
|
268 |
-
print(f"Using device: {DEVICE}")
|
269 |
-
print("Initializing models...")
|
270 |
-
for key, config in MODEL_REGISTRY.items():
|
271 |
-
LOADED_MODELS[key] = config["class"](key, config['name'], device=DEVICE, verbose=verbose_loading)
|
272 |
-
print("Model initialization complete.")
|
273 |
-
|
274 |
-
# --- Core Logic ---
|
275 |
-
@torch.no_grad()
|
276 |
-
def auto_tune_batch_size(images: list[Image.Image], selected_model_keys: list[str],
|
277 |
-
initial_bs: int = 1, max_bs_limit: int = 64, verbose: bool = False) -> int:
|
278 |
-
if not images or not selected_model_keys: return initial_bs
|
279 |
-
if verbose: print("Auto-tuning batch size...")
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
bs = initial_bs
|
286 |
-
optimal_bs = initial_bs
|
287 |
-
while bs <= len(images) and bs <= max_bs_limit:
|
288 |
-
try:
|
289 |
-
batch_test_images = [test_image] * bs
|
290 |
-
for model in active_models:
|
291 |
-
if verbose: print(f" Testing {model.model_display_name} with batch size {bs}")
|
292 |
-
model.predict(batch_test_images)
|
293 |
-
if DEVICE == 'cuda': torch.cuda.empty_cache()
|
294 |
-
|
295 |
-
optimal_bs = bs
|
296 |
-
if bs == max_bs_limit: break
|
297 |
-
bs = min(bs * 2, max_bs_limit) # Try next power of 2 or max_bs_limit
|
298 |
-
except Exception as e: # Typically OOM or other runtime errors
|
299 |
-
if verbose: print(f" Failed at batch size {bs} ({type(e).__name__}). Optimal so far: {optimal_bs}. Error: {str(e)[:100]}")
|
300 |
-
break
|
301 |
-
if verbose: print(f"Auto-tuned batch size: {optimal_bs}")
|
302 |
-
return max(1, optimal_bs)
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
progress_tracker(0, desc="Starting evaluation...")
|
321 |
-
total_models_to_run = len(selected_model_keys)
|
322 |
-
|
323 |
-
for model_idx, model_key in enumerate(selected_model_keys):
|
324 |
-
model = LOADED_MODELS.get(model_key)
|
325 |
-
if not model or not model.model:
|
326 |
-
logs.append(f"Skipping {MODEL_REGISTRY[model_key]['name']} (not loaded).")
|
327 |
-
continue
|
328 |
-
|
329 |
-
model_name = model.model_display_name
|
330 |
-
logs.append(f"Processing with {model_name}...")
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
overall_progress = (model_idx + model_progress_fraction) / total_models_to_run
|
337 |
-
progress_tracker(overall_progress, desc=f"{model_name} (Batch {batch_start_idx//batch_size + 1})")
|
338 |
-
|
339 |
-
batch_images = pil_images[batch_start_idx : batch_start_idx + batch_size]
|
340 |
try:
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
except Exception as e:
|
345 |
-
logs.append(f"
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
logs.append("Evaluation complete.")
|
364 |
-
progress_tracker(1.0, desc="Evaluation complete.")
|
365 |
-
return df, logs
|
366 |
|
367 |
-
def
|
368 |
-
|
369 |
-
|
370 |
-
cols_for_csv = ['File Name', 'Final Score'] + \
|
371 |
-
[name for name in selected_model_display_names if name in df.columns and name not in cols_for_csv]
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
# Define column structure for DataFrame
|
386 |
-
initial_df_cols = ['Thumbnail', 'File Name'] + model_name_choices + ['Final Score']
|
387 |
-
initial_datatypes = ['image', 'str'] + ['number'] * (len(model_name_choices) + 1)
|
388 |
-
|
389 |
-
with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
390 |
-
gr.Markdown("## β¨ Comprehensive Image Evaluation Tool β¨")
|
391 |
|
392 |
-
# For storing results DataFrame between interactions
|
393 |
-
results_state = gr.State(pd.DataFrame(columns=initial_df_cols))
|
394 |
-
|
395 |
with gr.Row():
|
396 |
-
with gr.Column(scale=1
|
397 |
-
gr.
|
398 |
-
|
399 |
-
|
|
|
|
|
400 |
|
401 |
-
|
402 |
-
|
403 |
-
|
|
|
|
|
|
|
404 |
|
405 |
-
evaluate_button = gr.Button("π Evaluate Images", variant="primary")
|
406 |
with gr.Row():
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
-
|
411 |
-
|
|
|
412 |
|
413 |
-
with gr.Column(scale=
|
414 |
-
gr.
|
415 |
-
|
416 |
-
|
|
|
|
|
|
|
|
|
417 |
|
418 |
-
|
419 |
-
label="Evaluation
|
420 |
-
|
421 |
-
datatype=initial_datatypes,
|
422 |
-
interactive=True, # Enables native sorting by clicking headers
|
423 |
-
height=500,
|
424 |
wrap=True
|
425 |
)
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
progress_slider: gr.update(value=0, label="Progress")
|
438 |
-
}
|
439 |
-
|
440 |
-
yield {logs_textbox: "Loading images...", progress_slider: gr.update(value=0.01, label="Loading images...")}
|
441 |
|
442 |
-
|
443 |
-
for
|
444 |
-
try:
|
445 |
-
pil_images.append(Image.open(f_obj.name).convert("RGB")) # f_obj.name is path for type="filepath"
|
446 |
-
file_names.append(os.path.basename(f_obj.name))
|
447 |
-
except Exception as e:
|
448 |
-
print(f"Error loading image {f_obj.name}: {e}") # Log to console
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
selected_keys = map_display_names_to_keys(selected_model_names)
|
454 |
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
batch_size_to_use = auto_tune_batch_size(pil_images, selected_keys, verbose=True)
|
459 |
-
yield {manual_batch_input: gr.update(value=batch_size_to_use)} # Update UI with detected size
|
460 |
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
466 |
)
|
467 |
|
468 |
-
#
|
469 |
-
|
470 |
-
df_new_results = df_new_results.sort_values(by='Final Score', ascending=False, na_position='last')
|
471 |
-
|
472 |
-
return {
|
473 |
-
results_state: df_new_results, results_dataframe: df_new_results,
|
474 |
-
logs_textbox: "\n".join(log_messages),
|
475 |
-
progress_slider: gr.update(value=1.0, label="Evaluation Complete")
|
476 |
-
}
|
477 |
-
|
478 |
-
def clear_all_outputs():
|
479 |
-
empty_df = pd.DataFrame(columns=initial_df_cols)
|
480 |
-
return {
|
481 |
-
results_state: empty_df, results_dataframe: empty_df,
|
482 |
-
files_input: None, logs_textbox: "Outputs cleared.",
|
483 |
-
progress_slider: gr.update(value=0, label="Progress")
|
484 |
-
}
|
485 |
-
|
486 |
-
def download_csv_file(current_df, selected_names):
|
487 |
-
if current_df.empty:
|
488 |
-
gr.Warning("No results available to download.")
|
489 |
-
return None
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
gr.Info("CSV file prepared for download.")
|
496 |
-
return tmp_f.name
|
497 |
-
gr.Error("Failed to generate CSV.")
|
498 |
-
return None
|
499 |
|
500 |
-
def
|
501 |
-
|
|
|
|
|
502 |
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
for i, row in df_updated.iterrows():
|
507 |
-
img_scores = [row[MODEL_REGISTRY[mk]['name']] for mk in selected_keys
|
508 |
-
if pd.notna(row.get(MODEL_REGISTRY[mk]['name']))]
|
509 |
-
if img_scores:
|
510 |
-
df_updated.loc[i, 'Final Score'] = float(np.clip(np.mean(img_scores), 0.0, 10.0))
|
511 |
-
else:
|
512 |
-
df_updated.loc[i, 'Final Score'] = np.nan
|
513 |
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
-
|
522 |
-
fn=
|
523 |
-
inputs=[
|
524 |
-
outputs=[
|
525 |
)
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
inputs=[models_checkbox_group, results_state],
|
531 |
-
outputs=[results_state, results_dataframe]
|
532 |
)
|
533 |
-
|
534 |
-
|
535 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
return demo
|
537 |
|
|
|
538 |
if __name__ == "__main__":
|
539 |
-
|
540 |
-
|
541 |
-
|
|
|
1 |
import os
|
2 |
+
import asyncio
|
3 |
+
from typing import List, Dict, Optional, Tuple, Any
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from pathlib import Path
|
6 |
+
import logging
|
7 |
|
8 |
import cv2
|
9 |
import numpy as np
|
|
|
10 |
import torch
|
11 |
import onnxruntime as rt
|
12 |
from PIL import Image
|
13 |
import gradio as gr
|
14 |
from transformers import pipeline
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
+
import pandas as pd
|
17 |
|
18 |
+
# Configure logging
|
19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Import aesthetic predictor function
|
23 |
+
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
|
24 |
|
25 |
|
26 |
+
@dataclass
|
27 |
+
class EvaluationResult:
|
28 |
+
"""Data class for storing image evaluation results"""
|
29 |
+
file_name: str
|
30 |
+
image_path: str
|
31 |
+
scores: Dict[str, Optional[float]] = field(default_factory=dict)
|
32 |
+
final_score: Optional[float] = None
|
33 |
+
|
34 |
+
def calculate_final_score(self, selected_models: List[str]) -> None:
|
35 |
+
"""Calculate the average score from selected models"""
|
36 |
+
valid_scores = [
|
37 |
+
score for model, score in self.scores.items()
|
38 |
+
if model in selected_models and score is not None
|
39 |
+
]
|
40 |
+
self.final_score = np.mean(valid_scores) if valid_scores else None
|
41 |
+
|
42 |
+
|
43 |
+
class BaseModel:
|
44 |
+
"""Base class for all evaluation models"""
|
45 |
+
def __init__(self, name: str):
|
46 |
+
self.name = name
|
47 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
48 |
|
49 |
+
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
50 |
+
"""Evaluate a batch of images"""
|
51 |
+
raise NotImplementedError
|
52 |
+
|
53 |
+
|
54 |
+
class AestheticShadowModel(BaseModel):
|
55 |
+
"""Aesthetic Shadow V2 model implementation"""
|
56 |
+
def __init__(self):
|
57 |
+
super().__init__("Aesthetic Shadow")
|
58 |
+
logger.info(f"Loading {self.name} model...")
|
59 |
+
self.model = pipeline(
|
60 |
+
"image-classification",
|
61 |
+
model="NeoChen1024/aesthetic-shadow-v2-backup",
|
62 |
+
device=0 if self.device == 'cuda' else -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
+
|
65 |
+
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
66 |
+
try:
|
67 |
+
results = self.model(images)
|
68 |
+
scores = []
|
69 |
+
for result in results:
|
70 |
+
hq_score = next((p['score'] for p in result if p['label'] == 'hq'), 0)
|
71 |
+
scores.append(float(np.clip(hq_score * 10.0, 0.0, 10.0)))
|
72 |
+
return scores
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Error in {self.name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return [None] * len(images)
|
|
|
|
|
|
|
76 |
|
77 |
+
|
78 |
+
class WaifuScorerModel(BaseModel):
|
79 |
+
"""Waifu Scorer V3 model implementation"""
|
80 |
+
def __init__(self):
|
81 |
+
super().__init__("Waifu Scorer")
|
82 |
+
logger.info(f"Loading {self.name} model...")
|
83 |
+
self._load_model()
|
84 |
+
|
85 |
def _load_model(self):
|
86 |
try:
|
87 |
import clip
|
|
|
88 |
|
89 |
+
# Load MLP model
|
90 |
+
self.mlp = self._create_mlp()
|
91 |
+
model_path = hf_hub_download("Eugeoter/waifu-scorer-v3", "model.pth")
|
92 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
self.mlp.load_state_dict(state_dict)
|
94 |
self.mlp.to(self.device).eval()
|
95 |
+
|
96 |
+
# Load CLIP model
|
97 |
+
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
|
98 |
+
self.available = True
|
|
|
|
|
99 |
except Exception as e:
|
100 |
+
logger.error(f"Failed to load {self.name}: {e}")
|
101 |
+
self.available = False
|
102 |
+
|
103 |
+
def _create_mlp(self) -> torch.nn.Module:
|
104 |
+
"""Create the MLP architecture"""
|
105 |
+
return torch.nn.Sequential(
|
106 |
+
torch.nn.Linear(768, 2048),
|
107 |
+
torch.nn.ReLU(),
|
108 |
+
torch.nn.BatchNorm1d(2048),
|
109 |
+
torch.nn.Dropout(0.3),
|
110 |
+
torch.nn.Linear(2048, 512),
|
111 |
+
torch.nn.ReLU(),
|
112 |
+
torch.nn.BatchNorm1d(512),
|
113 |
+
torch.nn.Dropout(0.3),
|
114 |
+
torch.nn.Linear(512, 256),
|
115 |
+
torch.nn.ReLU(),
|
116 |
+
torch.nn.BatchNorm1d(256),
|
117 |
+
torch.nn.Dropout(0.2),
|
118 |
+
torch.nn.Linear(256, 128),
|
119 |
+
torch.nn.ReLU(),
|
120 |
+
torch.nn.BatchNorm1d(128),
|
121 |
+
torch.nn.Dropout(0.1),
|
122 |
+
torch.nn.Linear(128, 32),
|
123 |
+
torch.nn.ReLU(),
|
124 |
+
torch.nn.Linear(32, 1)
|
125 |
+
)
|
126 |
+
|
127 |
@torch.no_grad()
|
128 |
+
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
129 |
+
if not self.available:
|
130 |
+
return [None] * len(images)
|
|
|
|
|
|
|
131 |
|
132 |
try:
|
133 |
+
# Process images
|
134 |
+
image_tensors = torch.cat([self.preprocess(img).unsqueeze(0) for img in images])
|
135 |
+
image_tensors = image_tensors.to(self.device)
|
136 |
+
|
137 |
+
# Extract features and predict
|
138 |
+
features = self.clip_model.encode_image(image_tensors)
|
139 |
+
features = features / features.norm(dim=-1, keepdim=True)
|
140 |
+
predictions = self.mlp(features)
|
141 |
|
|
|
142 |
scores = predictions.clamp(0, 10).cpu().numpy().flatten().tolist()
|
143 |
+
return scores
|
144 |
except Exception as e:
|
145 |
+
logger.error(f"Error in {self.name}: {e}")
|
146 |
+
return [None] * len(images)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
class AestheticPredictorV25Model(BaseModel):
|
150 |
+
"""Aesthetic Predictor V2.5 model implementation"""
|
151 |
+
def __init__(self):
|
152 |
+
super().__init__("Aesthetic V2.5")
|
153 |
+
logger.info(f"Loading {self.name} model...")
|
154 |
+
self.model, self.preprocessor = convert_v2_5_from_siglip(
|
155 |
+
low_cpu_mem_usage=True,
|
156 |
+
trust_remote_code=True,
|
157 |
+
)
|
158 |
+
if self.device == 'cuda':
|
159 |
+
self.model = self.model.to(torch.bfloat16).cuda()
|
160 |
+
|
161 |
@torch.no_grad()
|
162 |
+
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
|
|
163 |
try:
|
164 |
+
images_rgb = [img.convert("RGB") for img in images]
|
165 |
+
pixel_values = self.preprocessor(images=images_rgb, return_tensors="pt").pixel_values
|
166 |
+
|
167 |
+
if self.device == 'cuda':
|
168 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
|
|
|
|
|
|
169 |
|
170 |
+
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
|
171 |
+
if scores.ndim == 0:
|
172 |
+
scores = np.array([scores])
|
173 |
+
|
174 |
+
return [float(np.clip(s, 0.0, 10.0)) for s in scores]
|
175 |
except Exception as e:
|
176 |
+
logger.error(f"Error in {self.name}: {e}")
|
177 |
return [None] * len(images)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
class AnimeAestheticModel(BaseModel):
|
181 |
+
"""Anime Aesthetic model implementation"""
|
182 |
+
def __init__(self):
|
183 |
+
super().__init__("Anime Score")
|
184 |
+
logger.info(f"Loading {self.name} model...")
|
185 |
+
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
|
186 |
+
self.session = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
|
187 |
+
|
188 |
+
async def evaluate_batch(self, images: List[Image.Image]) -> List[Optional[float]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
scores = []
|
190 |
for img in images:
|
191 |
try:
|
192 |
+
score = self._process_single_image(img)
|
193 |
+
scores.append(float(np.clip(score * 10.0, 0.0, 10.0)))
|
|
|
194 |
except Exception as e:
|
195 |
+
logger.error(f"Error in {self.name} for single image: {e}")
|
196 |
scores.append(None)
|
197 |
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
def _process_single_image(self, img: Image.Image) -> float:
|
200 |
+
"""Process a single image through the model"""
|
201 |
+
img_np = np.array(img).astype(np.float32) / 255.0
|
202 |
+
size = 768
|
203 |
+
h, w = img_np.shape[:2]
|
204 |
+
|
205 |
+
# Calculate new dimensions
|
206 |
+
if h > w:
|
207 |
+
new_h, new_w = size, int(size * w / h)
|
208 |
+
else:
|
209 |
+
new_h, new_w = int(size * h / w), size
|
210 |
+
|
211 |
+
# Resize and center
|
212 |
+
resized = cv2.resize(img_np, (new_w, new_h))
|
213 |
+
canvas = np.zeros((size, size, 3), dtype=np.float32)
|
214 |
+
pad_h = (size - new_h) // 2
|
215 |
+
pad_w = (size - new_w) // 2
|
216 |
+
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
|
217 |
+
|
218 |
+
# Prepare input
|
219 |
+
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
|
220 |
+
return self.session.run(None, {"img": input_tensor})[0].item()
|
221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
class ImageEvaluator:
|
224 |
+
"""Main class for managing image evaluation"""
|
225 |
+
def __init__(self):
|
226 |
+
self.models: Dict[str, BaseModel] = {}
|
227 |
+
self._initialize_models()
|
228 |
+
self.results: List[EvaluationResult] = []
|
229 |
+
|
230 |
+
def _initialize_models(self):
|
231 |
+
"""Initialize all evaluation models"""
|
232 |
+
model_classes = [
|
233 |
+
("aesthetic_shadow", AestheticShadowModel),
|
234 |
+
("waifu_scorer", WaifuScorerModel),
|
235 |
+
("aesthetic_predictor_v2_5", AestheticPredictorV25Model),
|
236 |
+
("anime_aesthetic", AnimeAestheticModel),
|
237 |
+
]
|
238 |
+
|
239 |
+
for key, model_class in model_classes:
|
240 |
+
try:
|
241 |
+
self.models[key] = model_class()
|
242 |
+
logger.info(f"Successfully loaded {key}")
|
243 |
+
except Exception as e:
|
244 |
+
logger.error(f"Failed to load {key}: {e}")
|
245 |
|
246 |
+
async def evaluate_images(
|
247 |
+
self,
|
248 |
+
file_paths: List[str],
|
249 |
+
selected_models: List[str],
|
250 |
+
batch_size: int = 8,
|
251 |
+
progress_callback = None
|
252 |
+
) -> Tuple[List[EvaluationResult], List[str]]:
|
253 |
+
"""Evaluate images with selected models"""
|
254 |
+
logs = []
|
255 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
+
# Load images
|
258 |
+
images = []
|
259 |
+
valid_paths = []
|
260 |
+
for path in file_paths:
|
|
|
|
|
|
|
|
|
261 |
try:
|
262 |
+
img = Image.open(path).convert("RGB")
|
263 |
+
images.append(img)
|
264 |
+
valid_paths.append(path)
|
265 |
except Exception as e:
|
266 |
+
logs.append(f"Failed to load {Path(path).name}: {e}")
|
267 |
+
|
268 |
+
if not images:
|
269 |
+
logs.append("No valid images to process")
|
270 |
+
return results, logs
|
271 |
+
|
272 |
+
logs.append(f"Loaded {len(images)} images")
|
273 |
+
|
274 |
+
# Process in batches
|
275 |
+
total_batches = (len(images) + batch_size - 1) // batch_size
|
276 |
+
|
277 |
+
for batch_idx in range(0, len(images), batch_size):
|
278 |
+
batch_images = images[batch_idx:batch_idx + batch_size]
|
279 |
+
batch_paths = valid_paths[batch_idx:batch_idx + batch_size]
|
280 |
+
|
281 |
+
# Evaluate with each selected model
|
282 |
+
batch_results = {}
|
283 |
+
for model_key in selected_models:
|
284 |
+
if model_key in self.models:
|
285 |
+
scores = await self.models[model_key].evaluate_batch(batch_images)
|
286 |
+
batch_results[model_key] = scores
|
287 |
+
logs.append(f"Processed batch {batch_idx//batch_size + 1}/{total_batches} with {self.models[model_key].name}")
|
288 |
+
|
289 |
+
# Create results
|
290 |
+
for i, (path, img) in enumerate(zip(batch_paths, batch_images)):
|
291 |
+
result = EvaluationResult(
|
292 |
+
file_name=Path(path).name,
|
293 |
+
image_path=path
|
294 |
+
)
|
295 |
+
|
296 |
+
for model_key in selected_models:
|
297 |
+
if model_key in batch_results:
|
298 |
+
result.scores[model_key] = batch_results[model_key][i]
|
299 |
+
|
300 |
+
result.calculate_final_score(selected_models)
|
301 |
+
results.append(result)
|
302 |
+
|
303 |
+
# Update progress
|
304 |
+
if progress_callback:
|
305 |
+
progress = (batch_idx + batch_size) / len(images) * 100
|
306 |
+
progress_callback(min(progress, 100))
|
307 |
+
|
308 |
+
self.results = results
|
309 |
+
return results, logs
|
310 |
+
|
311 |
+
def get_results_dataframe(self, selected_models: List[str]) -> pd.DataFrame:
|
312 |
+
"""Convert results to pandas DataFrame"""
|
313 |
+
if not self.results:
|
314 |
+
return pd.DataFrame()
|
315 |
+
|
316 |
+
data = []
|
317 |
+
for result in self.results:
|
318 |
+
row = {
|
319 |
+
'File Name': result.file_name,
|
320 |
+
'Image': result.image_path,
|
321 |
+
}
|
322 |
+
|
323 |
+
# Add model scores
|
324 |
+
for model_key in selected_models:
|
325 |
+
if model_key in self.models:
|
326 |
+
score = result.scores.get(model_key)
|
327 |
+
row[self.models[model_key].name] = f"{score:.4f}" if score is not None else "N/A"
|
328 |
+
|
329 |
+
row['Final Score'] = f"{result.final_score:.4f}" if result.final_score is not None else "N/A"
|
330 |
+
data.append(row)
|
331 |
+
|
332 |
+
return pd.DataFrame(data)
|
333 |
|
|
|
|
|
|
|
334 |
|
335 |
+
def create_interface():
|
336 |
+
"""Create the Gradio interface"""
|
337 |
+
evaluator = ImageEvaluator()
|
|
|
|
|
338 |
|
339 |
+
# Model options for checkbox
|
340 |
+
model_options = [
|
341 |
+
("Aesthetic Shadow", "aesthetic_shadow"),
|
342 |
+
("Waifu Scorer", "waifu_scorer"),
|
343 |
+
("Aesthetic V2.5", "aesthetic_predictor_v2_5"),
|
344 |
+
("Anime Score", "anime_aesthetic")
|
345 |
+
]
|
346 |
|
347 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Image Evaluation Tool") as demo:
|
348 |
+
gr.Markdown("""
|
349 |
+
# π¨ Advanced Image Evaluation Tool
|
350 |
+
|
351 |
+
Evaluate images using state-of-the-art aesthetic and quality prediction models.
|
352 |
+
Upload your images and select the models you want to use for evaluation.
|
353 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
|
|
|
|
|
|
355 |
with gr.Row():
|
356 |
+
with gr.Column(scale=1):
|
357 |
+
input_files = gr.File(
|
358 |
+
label="Upload Images",
|
359 |
+
file_count="multiple",
|
360 |
+
file_types=["image"]
|
361 |
+
)
|
362 |
|
363 |
+
model_checkboxes = gr.CheckboxGroup(
|
364 |
+
choices=[label for label, _ in model_options],
|
365 |
+
value=[label for label, _ in model_options],
|
366 |
+
label="Select Models",
|
367 |
+
info="Choose which models to use for evaluation"
|
368 |
+
)
|
369 |
|
|
|
370 |
with gr.Row():
|
371 |
+
batch_size = gr.Slider(
|
372 |
+
minimum=1,
|
373 |
+
maximum=64,
|
374 |
+
value=8,
|
375 |
+
step=1,
|
376 |
+
label="Batch Size",
|
377 |
+
info="Number of images to process at once"
|
378 |
+
)
|
379 |
|
380 |
+
with gr.Row():
|
381 |
+
evaluate_btn = gr.Button("π Evaluate Images", variant="primary", scale=2)
|
382 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary", scale=1)
|
383 |
|
384 |
+
with gr.Column(scale=2):
|
385 |
+
progress = gr.Progress()
|
386 |
+
logs = gr.Textbox(
|
387 |
+
label="Processing Logs",
|
388 |
+
lines=10,
|
389 |
+
max_lines=10,
|
390 |
+
autoscroll=True
|
391 |
+
)
|
392 |
|
393 |
+
results_df = gr.Dataframe(
|
394 |
+
label="Evaluation Results",
|
395 |
+
interactive=False,
|
|
|
|
|
|
|
396 |
wrap=True
|
397 |
)
|
398 |
+
|
399 |
+
download_btn = gr.Button("π₯ Download Results (CSV)", variant="secondary")
|
400 |
+
download_file = gr.File(visible=False)
|
401 |
+
|
402 |
+
# State for storing results
|
403 |
+
results_state = gr.State([])
|
404 |
+
|
405 |
+
async def process_images(files, selected_model_labels, batch_size, progress=gr.Progress()):
|
406 |
+
"""Process uploaded images"""
|
407 |
+
if not files:
|
408 |
+
return "Please upload images first", pd.DataFrame(), []
|
|
|
|
|
|
|
|
|
409 |
|
410 |
+
# Convert labels to keys
|
411 |
+
selected_models = [key for label, key in model_options if label in selected_model_labels]
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
+
# Get file paths
|
414 |
+
file_paths = [f.name for f in files]
|
|
|
|
|
415 |
|
416 |
+
# Progress callback
|
417 |
+
def update_progress(value):
|
418 |
+
progress(value / 100, desc=f"Processing images... {value:.0f}%")
|
|
|
|
|
419 |
|
420 |
+
# Evaluate images
|
421 |
+
results, logs = await evaluator.evaluate_images(
|
422 |
+
file_paths,
|
423 |
+
selected_models,
|
424 |
+
batch_size,
|
425 |
+
update_progress
|
426 |
)
|
427 |
|
428 |
+
# Create DataFrame
|
429 |
+
df = evaluator.get_results_dataframe(selected_models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
+
# Format logs
|
432 |
+
log_text = "\n".join(logs[-10:]) # Show last 10 logs
|
433 |
+
|
434 |
+
return log_text, df, results
|
|
|
|
|
|
|
|
|
435 |
|
436 |
+
def update_results_on_model_change(selected_model_labels, results):
|
437 |
+
"""Update results when model selection changes"""
|
438 |
+
if not results:
|
439 |
+
return pd.DataFrame()
|
440 |
|
441 |
+
# Convert labels to keys
|
442 |
+
selected_models = [key for label, key in model_options if label in selected_model_labels]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
+
# Recalculate final scores
|
445 |
+
for result in results:
|
446 |
+
result.calculate_final_score(selected_models)
|
447 |
+
|
448 |
+
# Update evaluator results
|
449 |
+
evaluator.results = results
|
450 |
+
|
451 |
+
# Create updated DataFrame
|
452 |
+
return evaluator.get_results_dataframe(selected_models)
|
453 |
+
|
454 |
+
def clear_interface():
|
455 |
+
"""Clear all results"""
|
456 |
+
return "", pd.DataFrame(), [], None
|
457 |
+
|
458 |
+
def prepare_download(selected_model_labels, results):
|
459 |
+
"""Prepare CSV file for download"""
|
460 |
+
if not results:
|
461 |
+
return None
|
462 |
+
|
463 |
+
# Convert labels to keys
|
464 |
+
selected_models = [key for label, key in model_options if label in selected_model_labels]
|
465 |
+
|
466 |
+
# Get DataFrame
|
467 |
+
df = evaluator.get_results_dataframe(selected_models)
|
468 |
+
|
469 |
+
# Save to temporary file
|
470 |
+
import tempfile
|
471 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as f:
|
472 |
+
df.to_csv(f, index=False)
|
473 |
+
return f.name
|
474 |
+
|
475 |
+
# Event handlers
|
476 |
+
evaluate_btn.click(
|
477 |
+
fn=process_images,
|
478 |
+
inputs=[input_files, model_checkboxes, batch_size],
|
479 |
+
outputs=[logs, results_df, results_state]
|
480 |
+
)
|
481 |
|
482 |
+
model_checkboxes.change(
|
483 |
+
fn=update_results_on_model_change,
|
484 |
+
inputs=[model_checkboxes, results_state],
|
485 |
+
outputs=[results_df]
|
486 |
)
|
487 |
+
|
488 |
+
clear_btn.click(
|
489 |
+
fn=clear_interface,
|
490 |
+
outputs=[logs, results_df, results_state, download_file]
|
|
|
|
|
491 |
)
|
492 |
+
|
493 |
+
download_btn.click(
|
494 |
+
fn=prepare_download,
|
495 |
+
inputs=[model_checkboxes, results_state],
|
496 |
+
outputs=[download_file]
|
497 |
+
)
|
498 |
+
|
499 |
+
gr.Markdown("""
|
500 |
+
### π Notes
|
501 |
+
- **Model Selection**: Choose which models to use for evaluation. Final score is the average of selected models.
|
502 |
+
- **Batch Size**: Adjust based on your GPU memory. Larger batches process faster.
|
503 |
+
- **Results Table**: Click column headers to sort. The table updates automatically when models are selected/deselected.
|
504 |
+
- **Download**: Export results as CSV for further analysis.
|
505 |
+
|
506 |
+
### π― Score Interpretation
|
507 |
+
- **7-10**: High quality/aesthetic appeal
|
508 |
+
- **5-7**: Medium quality
|
509 |
+
- **0-5**: Lower quality
|
510 |
+
""")
|
511 |
+
|
512 |
return demo
|
513 |
|
514 |
+
|
515 |
if __name__ == "__main__":
|
516 |
+
# Create and launch the interface
|
517 |
+
demo = create_interface()
|
518 |
+
demo.queue().launch()
|