File size: 14,001 Bytes
57728d7
fab9033
 
024c6f2
fab9033
d924e11
57728d7
fab9033
d924e11
fab9033
d924e11
8b461d6
14e747f
57728d7
36c6ae2
fab9033
 
36c6ae2
fab9033
 
 
 
 
36c6ae2
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c6ae2
fab9033
 
 
 
 
36c6ae2
fab9033
36c6ae2
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c6ae2
fab9033
36c6ae2
fab9033
 
 
 
 
 
 
 
 
36c6ae2
d093305
1bc1e75
fab9033
36c6ae2
e84a5b4
fab9033
f56b01d
fab9033
 
 
 
e84a5b4
d093305
fab9033
 
 
 
 
d093305
fab9033
 
 
024c6f2
36c6ae2
 
024c6f2
fab9033
 
 
 
d093305
fab9033
 
 
 
 
 
 
 
 
 
 
 
 
 
36c6ae2
fab9033
36c6ae2
fab9033
 
 
36c6ae2
fab9033
36c6ae2
 
 
 
 
 
 
fab9033
36c6ae2
fab9033
36c6ae2
fab9033
36c6ae2
 
 
fab9033
36c6ae2
fab9033
 
 
 
 
36c6ae2
fab9033
 
 
 
36c6ae2
fab9033
 
 
e84a5b4
fab9033
 
 
36c6ae2
 
 
 
 
 
 
fab9033
36c6ae2
fab9033
36c6ae2
 
024c6f2
36c6ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab9033
 
 
36c6ae2
 
 
 
 
fab9033
 
 
 
 
 
 
 
 
36c6ae2
fab9033
36c6ae2
fab9033
36c6ae2
fab9033
 
36c6ae2
fab9033
36c6ae2
fab9033
 
 
 
 
 
 
 
 
36c6ae2
024c6f2
36c6ae2
fab9033
 
 
 
 
 
024c6f2
36c6ae2
 
fab9033
36c6ae2
 
fab9033
36c6ae2
 
fab9033
 
36c6ae2
024c6f2
fab9033
 
 
 
 
 
 
e84a5b4
fab9033
 
 
 
 
 
36c6ae2
 
 
fab9033
8b461d6
024c6f2
36c6ae2
 
 
024c6f2
fab9033
 
e84a5b4
fab9033
36c6ae2
fab9033
 
 
 
 
36c6ae2
 
024c6f2
d093305
fab9033
 
d093305
36c6ae2
f56b01d
fab9033
 
36c6ae2
fab9033
 
 
36c6ae2
024c6f2
36c6ae2
e84a5b4
8b461d6
fab9033
 
 
024c6f2
8b461d6
fab9033
 
36c6ae2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import gc
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Dict, Any, Type

import cv2
import gradio as gr
import numpy as np
import pandas as pd
import torch
import onnxruntime as rt
from PIL import Image
from huggingface_hub import hf_hub_download
from transformers import pipeline, Pipeline, AutoModel, AutoProcessor
from tqdm import tqdm

# Suppress a specific PIL warning about image size to handle large images
Image.MAX_IMAGE_PIXELS = None

# --- Configuration ---
CACHE_DIR = "./hf_cache"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Use bfloat16 for modern GPUs, float32 for others (including CPU)
DTYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float32

print(f"Using device: {DEVICE} with dtype: {DTYPE}")

# ==================================================================================
# 1. MODEL ABSTRACTION: A unified interface for all scorers.
# ==================================================================================

class AestheticScorer(ABC):
    """Abstract base class for all aesthetic scoring models."""
    def __init__(self, model_name: str, repo_id: str, filename: str = None):
        self.model_name = model_name
        self.repo_id = repo_id
        self.filename = filename
        self._model = None
        print(f"Initializing scorer definition: {self.model_name}")

    @property
    def model(self):
        """Lazy-loads the model on first access."""
        if self._model is None:
            print(f"Loading model weights for '{self.model_name}'...")
            self._model = self.load_model()
            print(f"'{self.model_name}' model weights loaded.")
        return self._model

    def _download_model(self) -> str:
        """Downloads the model file from Hugging Face Hub."""
        return hf_hub_download(repo_id=self.repo_id, filename=self.filename, cache_dir=CACHE_DIR)

    @abstractmethod
    def load_model(self) -> Any:
        """Loads the model and any necessary preprocessors."""
        pass

    @abstractmethod
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        """Scores a batch of images and returns a list of floats."""
        pass

    def release_model(self):
        """Releases model from memory to conserve VRAM/RAM."""
        if self._model is not None:
            print(f"Releasing model from memory: {self.model_name}")
            del self._model
            self._model = None
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

class PipelineScorer(AestheticScorer):
    """Scorer for models compatible with Hugging Face pipelines."""
    def load_model(self) -> Pipeline:
        return pipeline("image-classification", model=self.repo_id, device=DEVICE)

    @torch.no_grad()
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        results = self.model(image_batch, top_k=None) # Get all class scores
        scores = []
        for res in results:
            try:
                hq_score = next(item['score'] for item in res if item['label'] == 'hq')
                scores.append(round(hq_score * 10.0, 4))
            except (StopIteration, TypeError):
                scores.append(0.0)
        return scores

class ONNXScorer(AestheticScorer):
    """Scorer for ONNX-based models."""
    def load_model(self) -> rt.InferenceSession:
        model_path = self._download_model()
        return rt.InferenceSession(model_path, providers=['CUDAExecutionProvider' if DEVICE == 'cuda' else 'CPUExecutionProvider'])

    def _preprocess(self, img: Image.Image) -> np.ndarray:
        img_np = np.array(img.convert("RGB")).astype(np.float32) / 255.0
        s = 768
        h, w = img_np.shape[:2]
        ratio = s / max(h, w)
        new_h, new_w = int(h * ratio), int(w * ratio)
        
        resized = cv2.resize(img_np, (new_w, new_h), interpolation=cv2.INTER_AREA)
        canvas = np.zeros((s, s, 3), dtype=np.float32)
        pad_h, pad_w = (s - new_h) // 2, (s - new_w) // 2
        canvas[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = resized
        
        return np.transpose(canvas, (2, 0, 1))[np.newaxis, :]

    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        scores = []
        for img in image_batch:
            try:
                input_tensor = self._preprocess(img)
                pred = self.model.run(None, {"img": input_tensor})[0].item()
                scores.append(round(pred * 10.0, 4))
            except Exception:
                scores.append(0.0)
        return scores

class CLIPMLPScorer(AestheticScorer):
    """Scorer for models using a CLIP backbone and a custom MLP head."""
    class MLP(torch.nn.Module):
        """Re-implementation of the exact MLP from the original code."""
        def __init__(self, input_size: int):
            super().__init__()
            self.layers = torch.nn.Sequential(
                torch.nn.Linear(input_size, 2048),
                torch.nn.ReLU(),
                torch.nn.BatchNorm1d(2048),
                torch.nn.Dropout(0.3),
                torch.nn.Linear(2048, 512),
                torch.nn.ReLU(),
                torch.nn.BatchNorm1d(512),
                torch.nn.Dropout(0.3),
                torch.nn.Linear(512, 256),
                torch.nn.ReLU(),
                torch.nn.BatchNorm1d(256),
                torch.nn.Dropout(0.2),
                torch.nn.Linear(256, 128),
                torch.nn.ReLU(),
                torch.nn.BatchNorm1d(128),
                torch.nn.Dropout(0.1),
                torch.nn.Linear(128, 32),
                torch.nn.ReLU(),
                torch.nn.Linear(32, 1)
            )
        def forward(self, x):
            return self.layers(x)

    def load_model(self) -> Dict[str, Any]:
        import clip
        model_path = self._download_model()
        mlp = self.MLP(input_size=768) # ViT-L/14 has 768 features
        state_dict = torch.load(model_path, map_location=DEVICE)
        mlp.load_state_dict(state_dict)
        mlp.to(device=DEVICE)
        mlp.eval()
        clip_model, preprocess = clip.load("ViT-L/14", device=DEVICE)
        return {"mlp": mlp, "clip": clip_model, "preprocess": preprocess}

    @torch.no_grad()
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        preprocess = self.model['preprocess']
        # Handle single-image batches correctly for CLIP
        if len(image_batch) == 1:
            image_batch = image_batch * 2
            single_image_mode = True
        else:
            single_image_mode = False

        image_tensors = torch.cat([preprocess(img).unsqueeze(0) for img in image_batch]).to(DEVICE)
        image_features = self.model['clip'].encode_image(image_tensors).to(torch.float32)
        image_features /= image_features.norm(dim=-1, keepdim=True)
        predictions = self.model['mlp'](image_features).squeeze(-1)
        scores = predictions.clamp(0, 10).float().cpu().numpy()
        
        final_scores = [round(float(s), 4) for s in scores]
        return final_scores[:1] if single_image_mode else final_scores

class SigLIPScorer(AestheticScorer):
    """Scorer for the Aesthetic Predictor V2.5 SigLIP model."""
    def load_model(self) -> Dict[str, Any]:
        model = AutoModel.from_pretrained(self.repo_id, trust_remote_code=True).to(DEVICE, DTYPE).eval()
        processor = AutoProcessor.from_pretrained(self.repo_id, trust_remote_code=True)
        return {"model": model, "processor": processor}

    @torch.no_grad()
    def score_batch(self, image_batch: List[Image.Image]) -> List[float]:
        inputs = self.model['processor'](
            images=[img.convert("RGB") for img in image_batch],
            return_tensors="pt"
        )
        inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
        inputs['pixel_values'] = inputs['pixel_values'].to(DTYPE)
        logits = self.model(**inputs).logits.squeeze(-1)
        scores = logits.float().cpu().numpy()
        return [round(float(s), 4) for s in scores]

# --- Model Registry ---
MODEL_REGISTRY: Dict[str, AestheticScorer] = {
    "Aesthetic Shadow V2": PipelineScorer("Aesthetic Shadow V2", "NeoChen1024/aesthetic-shadow-v2-backup"),
    "Waifu Scorer V3": CLIPMLPScorer("Waifu Scorer V3", "Eugeoter/waifu-scorer-v3", "model.pth"),
    "Aesthetic V2.5 SigLIP": SigLIPScorer("Aesthetic V2.5 SigLIP", "জিংוניत्र/Aesthetic-Predictor-V2-5-SigLIP"),
    "Anime Scorer": ONNXScorer("Anime Scorer", "skytnt/anime-aesthetic", "model.onnx")
}
_loaded_models_cache: Dict[str, AestheticScorer] = {}

# ==================================================================================
# 2. CORE PROCESSING LOGIC
# ==================================================================================

def get_scorers(model_names: List[str]) -> List[AestheticScorer]:
    """Retrieves and caches scorer instances based on selected names."""
    for name in list(_loaded_models_cache.keys()):
        if name not in model_names:
            _loaded_models_cache[name].release_model()
            del _loaded_models_cache[name]
    return [_loaded_models_cache.setdefault(name, MODEL_REGISTRY[name]) for name in model_names]
    
def evaluate_images(
    files: List[gr.File], selected_model_names: List[str], batch_size: int, progress=gr.Progress(track_tqdm=True)
) -> pd.DataFrame:
    """Main function to process images and return results as a Pandas DataFrame."""
    if not files:
        gr.Warning("No images uploaded. Please upload files to evaluate.")
        return pd.DataFrame()
    if not selected_model_names:
        gr.Warning("No models selected. Please select at least one model.")
        return pd.DataFrame()

    try:
        image_paths = [Path(f.name) for f in files]
        all_results, scorers = [], get_scorers(selected_model_names)
        
        for i in tqdm(range(0, len(image_paths), batch_size), desc="Processing Batches"):
            batch_paths = image_paths[i : i + batch_size]
            try:
                batch_images = [Image.open(p).convert("RGB") for p in batch_paths]
            except Exception as e:
                gr.Warning(f"Skipping a batch due to an error loading an image: {e}")
                continue
            
            batch_scores = {scorer.model_name: scorer.score_batch(batch_images) for scorer in scorers}
            
            for j, path in enumerate(batch_paths):
                result_row = {"Image": str(path), "Filename": path.name}
                scores_for_avg = [batch_scores[s.model_name][j] for s in scorers]
                for scorer in scorers:
                    result_row[scorer.model_name] = batch_scores[scorer.model_name][j]
                result_row["Average Score"] = round(np.mean(scores_for_avg), 4) if scores_for_avg else 0.0
                all_results.append(result_row)

        return pd.DataFrame(all_results) if all_results else pd.DataFrame()
        
    except Exception as e:
        gr.Error(f"A critical error occurred: {e}")
        return pd.DataFrame()

# ==================================================================================
# 3. GRADIO USER INTERFACE
# ==================================================================================

def create_ui() -> gr.Blocks:
    """Creates and configures the Gradio web interface."""
    all_model_names = list(MODEL_REGISTRY.keys())
    dataframe_headers = ["Image", "Filename"] + all_model_names + ["Average Score"]
    dataframe_datatypes = ["image", "str"] + ["number"] * (len(all_model_names) + 1)
    
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), title="Image Aesthetic Scorer") as demo:
        gr.Markdown("# 🖼️ Modern Image Aesthetic Scorer")
        gr.Markdown("Upload images, select models, and click 'Evaluate'. Results table supports **interactive sorting** and **downloading as CSV**.")

        with gr.Row():
            with gr.Column(scale=1):
                input_files = gr.Files(label="Upload Images", file_count="multiple", file_types=["image"])
                model_checkboxes = gr.CheckboxGroup(choices=all_model_names, value=all_model_names, label="Scoring Models")
                batch_size_slider = gr.Slider(minimum=1, maximum=64, value=8, step=1, label="Batch Size", info="Adjust based on your VRAM.")
                with gr.Row():
                    process_button = gr.Button("🚀 Evaluate Images", variant="primary")
                    clear_button = gr.Button("🧹 Clear All")
            
            with gr.Column(scale=3):
                # CORRECTED LINE: height and show_download_button are passed directly here.
                results_dataframe = gr.DataFrame(
                    headers=dataframe_headers,
                    datatype=dataframe_datatypes,
                    label="Evaluation Scores",
                    interactive=True,
                    height=800,
                    show_download_button=True
                )

        process_button.click(
            fn=evaluate_images,
            inputs=[input_files, model_checkboxes, batch_size_slider],
            outputs=[results_dataframe]
        )

        def clear_outputs():
            for scorer in list(_loaded_models_cache.values()):
                scorer.release_model()
            _loaded_models_cache.clear()
            gr.Info("Cleared results and released models from memory.")
            return pd.DataFrame(), None # Clear dataframe and file input
        
        clear_button.click(fn=clear_outputs, outputs=[results_dataframe, input_files])
    return demo

# ==================================================================================
# 4. APPLICATION ENTRY POINT
# ==================================================================================

if __name__ == "__main__":
    os.makedirs(CACHE_DIR, exist_ok=True)
    app = create_ui()
    app.queue().launch()