File size: 9,622 Bytes
dfa0bd7
2b1e4b7
d27df0e
96070b5
bc928c9
2c099cb
 
 
 
 
 
 
ea6037b
2c099cb
bc928c9
2c099cb
 
ea6037b
 
 
 
2b1e4b7
2c099cb
ea6037b
 
 
 
 
2c099cb
 
 
 
ea6037b
 
 
 
4efedce
ea6037b
 
 
 
 
 
 
 
2b1e4b7
ea6037b
2c099cb
 
 
 
bc928c9
2c099cb
 
 
bc928c9
2c099cb
 
ea6037b
2c099cb
 
 
 
 
ea6037b
 
 
2c099cb
 
 
ea6037b
2c099cb
 
 
 
 
 
ea6037b
2c099cb
ea6037b
 
 
2c099cb
ea6037b
2c099cb
 
 
ea6037b
2c099cb
 
 
 
 
bc928c9
 
 
ea6037b
 
 
 
 
 
 
bc928c9
2c099cb
 
 
 
 
 
 
ea6037b
 
 
 
 
bc928c9
2c099cb
 
ea6037b
2c099cb
 
 
 
 
 
 
ea6037b
 
 
 
 
bc928c9
 
ea6037b
2c099cb
ea6037b
 
 
2c099cb
 
ea6037b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c099cb
 
ea6037b
2c099cb
 
ea6037b
2c099cb
 
 
 
ea6037b
2c099cb
ea6037b
 
 
 
 
2c099cb
 
ea6037b
 
 
 
74b6cd5
ea6037b
 
74b6cd5
ea6037b
 
 
 
 
 
 
 
bc928c9
ea6037b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96070b5
ea6037b
2c099cb
 
ea6037b
74b6cd5
 
ea6037b
 
 
 
 
 
74b6cd5
 
ea6037b
74b6cd5
2c099cb
 
 
 
 
bc928c9
2c099cb
 
 
 
 
 
 
 
 
 
 
bc928c9
 
74b6cd5
4efedce
2c099cb
74b6cd5
2c099cb
4efedce
 
ea6037b
58d3ab4
ea6037b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import plotly.figure_factory as ff
import nltk
import numpy as np
import pandas as pd
from collections import Counter
from scipy import stats
import torch
from wordcloud import WordCloud
from topic_translator import translate_topics
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.cluster import KMeans

# GPU ์„ค์ •
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# NLTK ํ•„์š” ๋ฐ์ดํ„ฐ ๋‹ค์šด๋กœ๋“œ
try:
    nltk.download('punkt', quiet=True)
    nltk.download('vader_lexicon', quiet=True)
except Exception as e:
    print(f"NLTK ๋ฐ์ดํ„ฐ ๋‹ค์šด๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")

SAMPLE_TEXT = """
The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
"""

# WBGDocTopic ์ดˆ๊ธฐํ™” ์‹œ device ์ง€์ •
clf = wbgtopic.WBGDocTopic(device=device)

def safe_process(func):
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            print(f"Error in {func.__name__}: {str(e)}")
            return None
    return wrapper

@safe_process
def analyze_text_sections(text):
    sentences = sent_tokenize(text)
    sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
    section_topics = []
    
    for section in sections:
        topics = clf.suggest_topics(section)[0]
        section_topics.append(topics)
    
    return section_topics

@safe_process
def calculate_topic_correlations(topics):
    topic_scores = {}
    for topic in topics:
        topic_scores[topic['label']] = topic['score_mean']
    
    if len(topic_scores) < 2:
        return np.array([[1]]), list(topic_scores.keys())
    
    correlation_matrix = np.corrcoef(list(topic_scores.values()))
    return correlation_matrix, list(topic_scores.keys())

@safe_process
def perform_sentiment_analysis(text):
    sia = SentimentIntensityAnalyzer()
    sentences = sent_tokenize(text)
    sentiments = [sia.polarity_scores(sent) for sent in sentences]
    return pd.DataFrame(sentiments)

@safe_process
def create_topic_clusters(topics):
    if len(topics) < 3:
        return np.zeros(len(topics))
    
    X = np.array([[t['score_mean'], t['score_std']] for t in topics])
    kmeans = KMeans(n_clusters=min(3, len(topics)), random_state=42)
    clusters = kmeans.fit_predict(X)
    return clusters

@safe_process
def create_main_charts(topics):
    bar_fig = go.Figure()
    bar_fig.add_trace(go.Bar(
        x=[t['label'] for t in topics],
        y=[t['score'] for t in topics],
        name='๊ด€๋ จ๋„',
        marker_color='rgb(55, 83, 109)'
    ))
    bar_fig.update_layout(
        title='์ฃผ์ œ ๋ถ„์„ ๊ฒฐ๊ณผ',
        height=500,
        xaxis_title='์ฃผ์ œ',
        yaxis_title='๊ด€๋ จ๋„ (%)',
        template='plotly_white'
    )
    
    radar_fig = go.Figure()
    radar_fig.add_trace(go.Scatterpolar(
        r=[t['score'] for t in topics],
        theta=[t['label'] for t in topics],
        fill='toself',
        name='์ฃผ์ œ ๋ถ„ํฌ'
    ))
    radar_fig.update_layout(
        title='์ฃผ์ œ ๋ ˆ์ด๋” ์ฐจํŠธ',
        height=500,
        template='plotly_white'
    )
    
    return bar_fig, radar_fig

@safe_process
def create_correlation_heatmap(corr_matrix, labels):
    fig = go.Figure(data=go.Heatmap(
        z=corr_matrix,
        x=labels,
        y=labels,
        colorscale='Viridis'
    ))
    fig.update_layout(
        title='์ฃผ์ œ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„',
        height=500,
        template='plotly_white'
    )
    return fig

@safe_process
def create_topic_evolution(section_topics):
    if not section_topics or len(section_topics) == 0:
        return go.Figure()

    fig = go.Figure()
    for topic in section_topics[0]:
        try:
            topic_scores = [topics[topic['label']]['score_mean'] 
                          for topics in section_topics]
            fig.add_trace(go.Scatter(
                x=list(range(len(section_topics))),
                y=topic_scores,
                name=topic['label'],
                mode='lines+markers'
            ))
        except Exception as e:
            print(f"Error processing topic {topic['label']}: {e}")
            continue
    
    fig.update_layout(
        title='์ฃผ์ œ ๋ณ€ํ™” ์ถ”์ด',
        xaxis_title='์„น์…˜',
        yaxis_title='๊ด€๋ จ๋„',
        height=500,
        template='plotly_white'
    )
    return fig

@safe_process
def create_confidence_gauge(topics):
    fig = go.Figure()
    for i, topic in enumerate(topics):
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=topic['confidence'],
            title={'text': topic['label']},
            domain={'row': 0, 'column': i, 'x': [i/len(topics), (i+1)/len(topics)]}
        ))
    fig.update_layout(
        grid={'rows': 1, 'columns': len(topics)},
        height=400,
        template='plotly_white'
    )
    return fig

@safe_process
def process_results(results):
    if not results or not results[0]:
        return []
    
    topics = results[0]
    top_topics = sorted(topics, key=lambda x: x['score_mean'], reverse=True)[:5]
    
    formatted_topics = []
    for topic in top_topics:
        formatted_topic = {
            'label': translate_topics.get(topic['label'], topic['label']),
            'score': round(topic['score_mean'] * 100, 1),
            'confidence': round((1 - topic['score_std']) * 100, 1)
        }
        formatted_topics.append(formatted_topic)
    
    return formatted_topics

@spaces.GPU(enable_queue=True, duration=50)
def process_all_analysis(text):
    try:
        # ๊ธฐ๋ณธ ์ฃผ์ œ ๋ถ„์„
        raw_results = clf.suggest_topics(text)
        topics = process_results(raw_results)
        
        # ์ถ”๊ฐ€ ๋ถ„์„
        section_topics = analyze_text_sections(text)
        corr_matrix, labels = calculate_topic_correlations(topics)
        sentiments = perform_sentiment_analysis(text)
        clusters = create_topic_clusters(topics)
        
        # ์ฐจํŠธ ์ƒ์„ฑ
        bar_chart, radar_chart = create_main_charts(topics)
        heatmap = create_correlation_heatmap(corr_matrix, labels)
        evolution_chart = create_topic_evolution(section_topics)
        gauge_chart = create_confidence_gauge(topics)
        
        return {
            'topics': topics,
            'bar_chart': bar_chart,
            'radar_chart': radar_chart,
            'heatmap': heatmap,
            'evolution': evolution_chart,
            'gauge': gauge_chart,
            'sentiments': sentiments.to_dict() if sentiments is not None else {},
            'clusters': clusters.tolist() if clusters is not None else []
        }
    except Exception as e:
        print(f"Analysis error: {str(e)}")
        return {
            'error': str(e),
            'topics': [],
            'bar_chart': go.Figure(),
            'radar_chart': go.Figure(),
            'heatmap': go.Figure(),
            'evolution': go.Figure(),
            'gauge': go.Figure(),
            'sentiments': {},
            'clusters': []
        }

# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks(title="๊ณ ๊ธ‰ ๋ฌธ์„œ ์ฃผ์ œ ๋ถ„์„๊ธฐ") as demo:
    gr.Markdown("## ๐Ÿ“Š ๊ณ ๊ธ‰ ๋ฌธ์„œ ์ฃผ์ œ ๋ถ„์„๊ธฐ")
    gr.Markdown("๋ฌธ์„œ๋ฅผ ์ž…๋ ฅํ•˜๋ฉด ๋‹ค์–‘ํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์‹œ๊ฐํ™”ํ•˜์—ฌ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.")
    
    with gr.Row():
        text = gr.Textbox(
            value=SAMPLE_TEXT,
            label="๋ถ„์„ํ•  ํ…์ŠคํŠธ",
            placeholder="์—ฌ๊ธฐ์— ๋ถ„์„ํ•  ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
            lines=8
        )
    
    with gr.Row():
        submit_btn = gr.Button("๋ถ„์„ ์‹œ์ž‘", variant="primary")
    
    with gr.Tabs():
        with gr.TabItem("์ฃผ์š” ๋ถ„์„"):
            with gr.Row():
                plot1 = gr.Plot(label="์ฃผ์ œ ๋ถ„ํฌ")
                plot2 = gr.Plot(label="๋ ˆ์ด๋” ์ฐจํŠธ")
        
        with gr.TabItem("์ƒ์„ธ ๋ถ„์„"):
            with gr.Row():
                plot3 = gr.Plot(label="์ƒ๊ด€๊ด€๊ณ„ ํžˆํŠธ๋งต")
                plot4 = gr.Plot(label="์ฃผ์ œ ๋ณ€ํ™” ์ถ”์ด")
            
        with gr.TabItem("์‹ ๋ขฐ๋„ ๋ถ„์„"):
            plot5 = gr.Plot(label="์‹ ๋ขฐ๋„ ๊ฒŒ์ด์ง€")
            
        with gr.TabItem("๊ฐ์„ฑ ๋ถ„์„"):
            plot6 = gr.Plot(label="๊ฐ์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ")
            
    with gr.Row():
        output = gr.JSON(label="์ƒ์„ธ ๋ถ„์„ ๊ฒฐ๊ณผ")
    
    submit_btn.click(
        fn=process_all_analysis,
        inputs=[text],
        outputs=[output, plot1, plot2, plot3, plot4, plot5, plot6]
    )

if __name__ == "__main__":
    demo.queue(max_size=1)  # concurrency_count ๋Œ€์‹  max_size ์‚ฌ์šฉ
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )