Spaces:
Sleeping
Sleeping
File size: 6,553 Bytes
dfa0bd7 2b1e4b7 d27df0e 96070b5 bc928c9 2c099cb bc928c9 2c099cb 2b1e4b7 2c099cb 4efedce 96070b5 2b1e4b7 2c099cb bc928c9 2c099cb bc928c9 2c099cb bc928c9 2c099cb bc928c9 2c099cb bc928c9 2c099cb bc928c9 2c099cb 74b6cd5 2c099cb 74b6cd5 bc928c9 2c099cb bc928c9 2c099cb 96070b5 2c099cb 74b6cd5 2c099cb 74b6cd5 2c099cb 74b6cd5 2c099cb bc928c9 2c099cb bc928c9 74b6cd5 4efedce 2c099cb 74b6cd5 2c099cb 4efedce 2c099cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import plotly.figure_factory as ff
import nltk
import numpy as np
import pandas as pd
from collections import Counter
from scipy import stats
from wordcloud import WordCloud
from topic_translator import translate_topics
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
# NLTK ํ์ ๋ฐ์ดํฐ ๋ค์ด๋ก๋
nltk.download('punkt')
nltk.download('vader_lexicon')
SAMPLE_TEXT = """
The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
"""
clf = wbgtopic.WBGDocTopic()
def analyze_text_sections(text):
# ๋ฌธ๋จ๋ณ ๋ถ์
sentences = sent_tokenize(text)
sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
section_topics = []
for section in sections:
topics = clf.suggest_topics(section)[0]
section_topics.append(topics)
return section_topics
def calculate_topic_correlations(topics):
# ์ฃผ์ ๊ฐ ์๊ด๊ด๊ณ ๊ณ์ฐ
topic_scores = {}
for topic in topics:
topic_scores[topic['label']] = topic['score_mean']
correlation_matrix = np.corrcoef(list(topic_scores.values()))
return correlation_matrix, list(topic_scores.keys())
def perform_sentiment_analysis(text):
# ๊ฐ์ฑ ๋ถ์
sia = SentimentIntensityAnalyzer()
sentences = sent_tokenize(text)
sentiments = [sia.polarity_scores(sent) for sent in sentences]
return pd.DataFrame(sentiments)
def create_topic_clusters(topics):
# ์ฃผ์ ๊ตฐ์งํ
from sklearn.cluster import KMeans
X = np.array([[t['score_mean'], t['score_std']] for t in topics])
kmeans = KMeans(n_clusters=3, random_state=42)
clusters = kmeans.fit_predict(X)
return clusters
def create_main_charts(topics):
# 1. ๊ธฐ๋ณธ ๋ง๋ ์ฐจํธ
bar_fig = go.Figure()
bar_fig.add_trace(go.Bar(
x=[t['label'] for t in topics],
y=[t['score'] for t in topics],
name='๊ด๋ จ๋',
marker_color='rgb(55, 83, 109)'
))
bar_fig.update_layout(title='์ฃผ์ ๋ถ์ ๊ฒฐ๊ณผ', height=500)
# 2. ๋ ์ด๋ ์ฐจํธ
radar_fig = go.Figure()
radar_fig.add_trace(go.Scatterpolar(
r=[t['score'] for t in topics],
theta=[t['label'] for t in topics],
fill='toself',
name='์ฃผ์ ๋ถํฌ'
))
radar_fig.update_layout(title='์ฃผ์ ๋ ์ด๋ ์ฐจํธ')
return bar_fig, radar_fig
def create_correlation_heatmap(corr_matrix, labels):
fig = go.Figure(data=go.Heatmap(
z=corr_matrix,
x=labels,
y=labels,
colorscale='Viridis'
))
fig.update_layout(title='์ฃผ์ ๊ฐ ์๊ด๊ด๊ณ')
return fig
def create_topic_evolution(section_topics):
fig = go.Figure()
for topic in section_topics[0]:
topic_scores = [topics[topic['label']]['score_mean']
for topics in section_topics]
fig.add_trace(go.Scatter(
x=list(range(len(section_topics))),
y=topic_scores,
name=topic['label'],
mode='lines+markers'
))
fig.update_layout(title='์ฃผ์ ๋ณํ ์ถ์ด')
return fig
def create_confidence_gauge(topics):
fig = go.Figure()
for topic in topics:
fig.add_trace(go.Indicator(
mode="gauge+number",
value=topic['confidence'],
title={'text': topic['label']},
domain={'row': 0, 'column': 0}
))
fig.update_layout(grid={'rows': 1, 'columns': len(topics)})
return fig
def process_all_analysis(text):
# ๊ธฐ๋ณธ ์ฃผ์ ๋ถ์
raw_results = clf.suggest_topics(text)
topics = process_results(raw_results)
# ์ถ๊ฐ ๋ถ์
section_topics = analyze_text_sections(text)
corr_matrix, labels = calculate_topic_correlations(topics)
sentiments = perform_sentiment_analysis(text)
clusters = create_topic_clusters(topics)
# ์ฐจํธ ์์ฑ
bar_chart, radar_chart = create_main_charts(topics)
heatmap = create_correlation_heatmap(corr_matrix, labels)
evolution_chart = create_topic_evolution(section_topics)
gauge_chart = create_confidence_gauge(topics)
return {
'topics': topics,
'bar_chart': bar_chart,
'radar_chart': radar_chart,
'heatmap': heatmap,
'evolution': evolution_chart,
'gauge': gauge_chart,
'sentiments': sentiments.to_dict(),
'clusters': clusters.tolist()
}
with gr.Blocks(title="๊ณ ๊ธ ๋ฌธ์ ์ฃผ์ ๋ถ์๊ธฐ") as demo:
gr.Markdown("## ๐ ๊ณ ๊ธ ๋ฌธ์ ์ฃผ์ ๋ถ์๊ธฐ")
with gr.Row():
text = gr.Textbox(value=SAMPLE_TEXT, label="๋ถ์ํ ํ
์คํธ", lines=5)
with gr.Row():
submit_btn = gr.Button("๋ถ์ ์์")
with gr.Tabs():
with gr.TabItem("์ฃผ์ ๋ถ์"):
with gr.Row():
plot1 = gr.Plot(label="์ฃผ์ ๋ถํฌ")
plot2 = gr.Plot(label="๋ ์ด๋ ์ฐจํธ")
with gr.TabItem("์์ธ ๋ถ์"):
with gr.Row():
plot3 = gr.Plot(label="์๊ด๊ด๊ณ ํํธ๋งต")
plot4 = gr.Plot(label="์ฃผ์ ๋ณํ ์ถ์ด")
with gr.TabItem("์ ๋ขฐ๋ ๋ถ์"):
plot5 = gr.Plot(label="์ ๋ขฐ๋ ๊ฒ์ด์ง")
with gr.TabItem("๊ฐ์ฑ ๋ถ์"):
plot6 = gr.Plot(label="๊ฐ์ฑ ๋ถ์ ๊ฒฐ๊ณผ")
with gr.Row():
output = gr.JSON(label="์์ธ ๋ถ์ ๊ฒฐ๊ณผ")
submit_btn.click(
fn=process_all_analysis,
inputs=[text],
outputs=[output, plot1, plot2, plot3, plot4, plot5, plot6]
)
demo.launch(debug=True) |