openfree's picture
Update app.py
2279f85 verified
raw
history blame
5.24 kB
# ---------------------------------------------------------
# app.py (2025-05 rev, aligned with latest sonic.py)
# ---------------------------------------------------------
import os, io, hashlib, numpy as np, gradio as gr, spaces
from pydub import AudioSegment
from PIL import Image
from sonic import Sonic
# ------------------------------------------------------------------
# 1) 모델 & 체크포인트 다운로드 (최초 1회)
# ------------------------------------------------------------------
os.system(
'python3 -m pip install "huggingface_hub[cli]" accelerate -q; '
'huggingface-cli download LeonJoe13/Sonic '
' --local-dir checkpoints -q; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt '
' --local-dir checkpoints/stable-video-diffusion-img2vid-xt -q; '
'huggingface-cli download openai/whisper-tiny '
' --local-dir checkpoints/whisper-tiny -q'
)
pipe = Sonic() # GPU 초기화
# ------------------------------------------------------------------
def md5(b: bytes) -> str: # 빠른 32-byte 해시
return hashlib.md5(b).hexdigest()
TMP_DIR, RES_DIR = "./tmp_path", "./res_path"
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(RES_DIR, exist_ok=True)
# ------------------------------------------------------------------
@spaces.GPU(duration=600) # 최대 10분까지 GPU 사용
def get_video_res(img_p: str, wav_p: str, out_p: str, scale: float):
"""실제 Sonic 파이프라인 호출(얼굴 체크·프레임·interpolate 포함)"""
audio = AudioSegment.from_file(wav_p)
dur = len(audio) / 1000.0
steps = max(25, min(int(dur * 12.5), 750)) # 12.5fps 기준
print(f"[INFO] Audio duration {dur:.2f}s ➜ steps {steps}")
face = pipe.preprocess(img_p)
print("[INFO] Face detection:", face)
if face["face_num"] == 0:
return -1 # 얼굴 없음
pipe.process(img_p, wav_p, out_p,
min_resolution=512,
inference_steps=steps,
dynamic_scale=scale)
return out_p
# ------------------------------------------------------------------
def run_sonic(image, audio, scale):
"""Gradio 버튼 연결 함수 (캐싱·전처리)"""
if image is None: raise gr.Error("Please upload an image.")
if audio is None: raise gr.Error("Please upload an audio file.")
# ---- 이미지 저장 & 해시 -------------------------------------------------
buf_img = io.BytesIO(); image.save(buf_img, "PNG")
img_key = md5(buf_img.getvalue())
img_path = os.path.join(TMP_DIR, f"{img_key}.png")
if not os.path.exists(img_path):
with open(img_path, "wb") as f: f.write(buf_img.getvalue())
# ---- 오디오 → mono/16kHz WAV (≤60 s) -----------------------------------
sr, arr = audio[:2]
arr = arr if arr.ndim == 2 else arr[:, None]
seg = AudioSegment(arr.tobytes(), frame_rate=sr,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1]
).set_channels(1).set_frame_rate(16_000)[:60_000]
buf_wav = io.BytesIO(); seg.export(buf_wav, format="wav")
wav_key = md5(buf_wav.getvalue())
wav_path = os.path.join(TMP_DIR, f"{wav_key}.wav")
if not os.path.exists(wav_path):
with open(wav_path, "wb") as f: f.write(buf_wav.getvalue())
# ---- 결과 파일 경로 -----------------------------------------------------
out_path = os.path.join(RES_DIR, f"{img_key}_{wav_key}_{scale}.mp4")
# ---- 캐시 확인 ---------------------------------------------------------
if os.path.exists(out_path):
print("[INFO] Cached video used.")
return out_path
print(f"[INFO] Generating video (scale={scale}) …")
res = get_video_res(img_path, wav_path, out_path, scale)
if res == -1:
raise gr.Error("No face detected in the image.")
return res
# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
css = """
.gradio-container {font-family: Arial, sans-serif;}
.main-header {text-align:center;color:#2a2a2a;margin-bottom:2em;}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"<div class='main-header'>"
"<h1>🎭 Sonic: Portrait-to-Video Animator</h1>"
"<p>Create talking-head videos (≤60 s audio)</p>"
"</div>"
)
with gr.Row():
with gr.Column():
img_in = gr.Image(type="pil", label="Portrait Image")
aud_in = gr.Audio(type="numpy", label="Voice/Audio (≤60 s)")
scale = gr.Slider(0.5, 2.0, 1.0, 0.1,
label="Animation Intensity")
btn = gr.Button("Generate", variant="primary")
vid_out = gr.Video(label="Generated Animation")
btn.click(run_sonic, inputs=[img_in, aud_in, scale], outputs=vid_out)
gr.HTML(
"<div style='text-align:center;margin-top:1.5em'>"
"<a href='https://github.com/jixiaozhong/Sonic' target='_blank'>GitHub</a> | "
"<a href='https://arxiv.org/pdf/2411.16331' target='_blank'>Paper</a>"
"</div>"
)
demo.launch(share=True)