Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,228 +1,127 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
from pydub import AudioSegment
|
6 |
-
import hashlib
|
7 |
-
import io
|
8 |
-
from sonic import Sonic
|
9 |
from PIL import Image
|
10 |
-
import
|
11 |
-
|
12 |
-
# 초기 실행 시 필요한 모델들을 다운로드
|
13 |
-
cmd = (
|
14 |
-
'python3 -m pip install "huggingface_hub[cli]" accelerate; '
|
15 |
-
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
|
16 |
-
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
|
17 |
-
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
|
18 |
-
|
19 |
-
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
-
os.system(cmd)
|
23 |
-
|
24 |
-
pipe = Sonic()
|
25 |
-
|
26 |
-
def get_md5(content_bytes: bytes):
|
27 |
-
"""MD5 해시를 계산하여 32자리 문자열을 반환"""
|
28 |
-
return hashlib.md5(content_bytes).hexdigest()
|
29 |
-
|
30 |
-
tmp_path = './tmp_path/'
|
31 |
-
res_path = './res_path/'
|
32 |
-
os.makedirs(tmp_path, exist_ok=True)
|
33 |
-
os.makedirs(res_path, exist_ok=True)
|
34 |
-
|
35 |
-
@spaces.GPU(duration=600) # 긴 비디오 처리를 위해 duration 600초로 설정 (10분)
|
36 |
-
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
37 |
-
"""
|
38 |
-
Sonic pipeline으로부터 실제 비디오를 생성하는 함수.
|
39 |
-
최대 60초 길이의 오디오에 대해 inference_steps를 결정하여,
|
40 |
-
얼굴 탐지 후 영상 생성 작업을 수행함.
|
41 |
-
"""
|
42 |
-
expand_ratio = 0.0
|
43 |
-
min_resolution = 512
|
44 |
-
|
45 |
-
# 오디오 길이 계산
|
46 |
-
audio = AudioSegment.from_file(audio_path)
|
47 |
-
duration = len(audio) / 1000.0 # 초 단위
|
48 |
-
|
49 |
-
# 오디오 길이에 따라 inference_steps 결정 (최소 25프레임 ~ 최대 750프레임)
|
50 |
-
inference_steps = min(max(int(duration * 12.5), 25), 750)
|
51 |
-
print(f"[INFO] Audio duration: {duration:.2f} seconds, using inference_steps={inference_steps}")
|
52 |
-
|
53 |
-
# 얼굴 인식
|
54 |
-
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
55 |
-
print(f"[INFO] Face detection info: {face_info}")
|
56 |
-
|
57 |
-
# 얼굴이 하나라도 검출되면 -> pipeline 진행
|
58 |
-
if face_info['face_num'] > 0:
|
59 |
-
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
|
60 |
-
pipe.process(
|
61 |
-
img_path,
|
62 |
-
audio_path,
|
63 |
-
res_video_path,
|
64 |
-
min_resolution=min_resolution,
|
65 |
-
inference_steps=inference_steps,
|
66 |
-
dynamic_scale=dynamic_scale
|
67 |
-
|
68 |
-
|
69 |
-
)
|
70 |
-
return res_video_path
|
71 |
-
else:
|
72 |
-
# 얼굴이 전혀 없으면 -1 리턴
|
73 |
-
return -1
|
74 |
-
|
75 |
-
def process_sonic(image, audio, dynamic_scale):
|
76 |
-
"""
|
77 |
-
Gradio 인터페이스에서 호출되는 함수:
|
78 |
-
1. 이미지/오디오 검사
|
79 |
-
2. MD5 해시 -> 파일명
|
80 |
-
3. 캐시 검사 -> 없으면 영상 생성
|
81 |
-
"""
|
82 |
-
if image is None:
|
83 |
-
raise gr.Error("Please upload an image")
|
84 |
-
if audio is None:
|
85 |
-
raise gr.Error("Please upload an audio file")
|
86 |
-
|
87 |
-
# (1) 이미지 MD5
|
88 |
-
buf_img = io.BytesIO()
|
89 |
-
image.save(buf_img, format="PNG")
|
90 |
-
img_bytes = buf_img.getvalue()
|
91 |
-
img_md5 = get_md5(img_bytes)
|
92 |
-
|
93 |
-
# (2) 오디오 MD5
|
94 |
-
sampling_rate, arr = audio[:2]
|
95 |
-
if len(arr.shape) == 1:
|
96 |
-
arr = arr[:, None]
|
97 |
-
audio_segment = AudioSegment(
|
98 |
-
arr.tobytes(),
|
99 |
-
frame_rate=sampling_rate,
|
100 |
-
sample_width=arr.dtype.itemsize,
|
101 |
-
channels=arr.shape[1]
|
102 |
-
)
|
103 |
-
# Whisper 호환을 위해 mono/16kHz로 변환
|
104 |
-
audio_segment = audio_segment.set_channels(1).set_frame_rate(16000)
|
105 |
-
|
106 |
-
MAX_DURATION_MS = 60000
|
107 |
-
if len(audio_segment) > MAX_DURATION_MS:
|
108 |
-
audio_segment = audio_segment[:MAX_DURATION_MS]
|
109 |
-
|
110 |
-
buf_audio = io.BytesIO()
|
111 |
-
audio_segment.export(buf_audio, format="wav")
|
112 |
-
audio_bytes = buf_audio.getvalue()
|
113 |
-
audio_md5 = get_md5(audio_bytes)
|
114 |
-
|
115 |
-
# (3) 파일 경로
|
116 |
-
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
|
117 |
-
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
|
118 |
-
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
|
119 |
-
|
120 |
-
if not os.path.exists(image_path):
|
121 |
-
with open(image_path, "wb") as f:
|
122 |
-
f.write(img_bytes)
|
123 |
-
if not os.path.exists(audio_path):
|
124 |
-
with open(audio_path, "wb") as f:
|
125 |
-
f.write(audio_bytes)
|
126 |
-
|
127 |
-
# (4) 캐싱된 결과가 있으면 재사용
|
128 |
-
if os.path.exists(res_video_path):
|
129 |
-
print(f"[INFO] Using cached result: {res_video_path}")
|
130 |
-
return res_video_path
|
131 |
-
else:
|
132 |
-
print(f"[INFO] Generating new video with dynamic_scale={dynamic_scale}")
|
133 |
-
video_result = get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
134 |
-
return video_result
|
135 |
-
|
136 |
-
def get_example():
|
137 |
-
return []
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
css = """
|
140 |
-
.gradio-container {
|
141 |
-
|
142 |
-
}
|
143 |
-
.main-header {
|
144 |
-
text-align: center;
|
145 |
-
color: #2a2a2a;
|
146 |
-
margin-bottom: 2em;
|
147 |
-
}
|
148 |
-
.parameter-section {
|
149 |
-
background-color: #f5f5f5;
|
150 |
-
padding: 1em;
|
151 |
-
border-radius: 8px;
|
152 |
-
margin: 1em 0;
|
153 |
-
}
|
154 |
-
.example-section {
|
155 |
-
margin-top: 2em;
|
156 |
-
}
|
157 |
"""
|
158 |
|
159 |
with gr.Blocks(css=css) as demo:
|
160 |
-
gr.HTML(
|
161 |
-
<div class=
|
162 |
-
|
163 |
-
|
164 |
-
</div>
|
165 |
-
|
166 |
-
|
167 |
with gr.Row():
|
168 |
with gr.Column():
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
value=1.0,
|
184 |
-
step=0.1,
|
185 |
-
label="Animation Intensity",
|
186 |
-
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
|
187 |
-
)
|
188 |
-
process_btn = gr.Button(
|
189 |
-
"Generate Animation",
|
190 |
-
variant="primary",
|
191 |
-
elem_id="process_btn"
|
192 |
-
)
|
193 |
-
|
194 |
-
with gr.Column():
|
195 |
-
video_output = gr.Video(
|
196 |
-
label="Generated Animation",
|
197 |
-
elem_id="video_output"
|
198 |
-
)
|
199 |
-
|
200 |
-
process_btn.click(
|
201 |
-
fn=process_sonic,
|
202 |
-
inputs=[image_input, audio_input, dynamic_scale],
|
203 |
-
outputs=video_output,
|
204 |
)
|
205 |
-
|
206 |
-
|
207 |
-
examples=get_example(),
|
208 |
-
fn=process_sonic,
|
209 |
-
inputs=[image_input, audio_input, dynamic_scale],
|
210 |
-
outputs=video_output,
|
211 |
-
cache_examples=False
|
212 |
-
)
|
213 |
-
|
214 |
-
gr.HTML("""
|
215 |
-
<div style="text-align: center; margin-top: 2em;">
|
216 |
-
<div style="margin-bottom: 1em;">
|
217 |
-
<a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
|
218 |
-
<img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
|
219 |
-
</a>
|
220 |
-
<a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
|
221 |
-
<img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
|
222 |
-
</a>
|
223 |
-
</div>
|
224 |
-
<p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
|
225 |
-
</div>
|
226 |
-
""")
|
227 |
-
|
228 |
-
demo.launch(share=True)
|
|
|
1 |
+
# ---------------------------------------------------------
|
2 |
+
# app.py (2025-05 rev, aligned with latest sonic.py)
|
3 |
+
# ---------------------------------------------------------
|
4 |
+
import os, io, hashlib, numpy as np, gradio as gr, spaces
|
5 |
from pydub import AudioSegment
|
|
|
|
|
|
|
6 |
from PIL import Image
|
7 |
+
from sonic import Sonic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# ------------------------------------------------------------------
|
10 |
+
# 1) 모델 & 체크포인트 다운로드 (최초 1회)
|
11 |
+
# ------------------------------------------------------------------
|
12 |
+
os.system(
|
13 |
+
'python3 -m pip install "huggingface_hub[cli]" accelerate -q; '
|
14 |
+
'huggingface-cli download LeonJoe13/Sonic '
|
15 |
+
' --local-dir checkpoints -q; '
|
16 |
+
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt '
|
17 |
+
' --local-dir checkpoints/stable-video-diffusion-img2vid-xt -q; '
|
18 |
+
'huggingface-cli download openai/whisper-tiny '
|
19 |
+
' --local-dir checkpoints/whisper-tiny -q'
|
20 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
pipe = Sonic() # GPU 초기화
|
23 |
+
|
24 |
+
# ------------------------------------------------------------------
|
25 |
+
def md5(b: bytes) -> str: # 빠른 32-byte 해시
|
26 |
+
return hashlib.md5(b).hexdigest()
|
27 |
+
|
28 |
+
TMP_DIR, RES_DIR = "./tmp_path", "./res_path"
|
29 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
30 |
+
os.makedirs(RES_DIR, exist_ok=True)
|
31 |
+
|
32 |
+
# ------------------------------------------------------------------
|
33 |
+
@spaces.GPU(duration=600) # 최대 10분까지 GPU 사용
|
34 |
+
def get_video_res(img_p: str, wav_p: str, out_p: str, scale: float):
|
35 |
+
"""실제 Sonic 파이프라인 호출(얼굴 체크·프레임·interpolate 포함)"""
|
36 |
+
audio = AudioSegment.from_file(wav_p)
|
37 |
+
dur = len(audio) / 1000.0
|
38 |
+
steps = max(25, min(int(dur * 12.5), 750)) # 12.5fps 기준
|
39 |
+
|
40 |
+
print(f"[INFO] Audio duration {dur:.2f}s ➜ steps {steps}")
|
41 |
+
|
42 |
+
face = pipe.preprocess(img_p)
|
43 |
+
print("[INFO] Face detection:", face)
|
44 |
+
if face["face_num"] == 0:
|
45 |
+
return -1 # 얼굴 없음
|
46 |
+
|
47 |
+
pipe.process(img_p, wav_p, out_p,
|
48 |
+
min_resolution=512,
|
49 |
+
inference_steps=steps,
|
50 |
+
dynamic_scale=scale)
|
51 |
+
return out_p
|
52 |
+
|
53 |
+
# ------------------------------------------------------------------
|
54 |
+
def run_sonic(image, audio, scale):
|
55 |
+
"""Gradio 버튼 연결 함수 (캐싱·전처리)"""
|
56 |
+
if image is None: raise gr.Error("Please upload an image.")
|
57 |
+
if audio is None: raise gr.Error("Please upload an audio file.")
|
58 |
+
|
59 |
+
# ---- 이미지 저장 & 해시 -------------------------------------------------
|
60 |
+
buf_img = io.BytesIO(); image.save(buf_img, "PNG")
|
61 |
+
img_key = md5(buf_img.getvalue())
|
62 |
+
img_path = os.path.join(TMP_DIR, f"{img_key}.png")
|
63 |
+
if not os.path.exists(img_path):
|
64 |
+
with open(img_path, "wb") as f: f.write(buf_img.getvalue())
|
65 |
+
|
66 |
+
# ---- 오디오 → mono/16kHz WAV (≤60 s) -----------------------------------
|
67 |
+
sr, arr = audio[:2]
|
68 |
+
arr = arr if arr.ndim == 2 else arr[:, None]
|
69 |
+
seg = AudioSegment(arr.tobytes(), frame_rate=sr,
|
70 |
+
sample_width=arr.dtype.itemsize,
|
71 |
+
channels=arr.shape[1]
|
72 |
+
).set_channels(1).set_frame_rate(16_000)[:60_000]
|
73 |
+
buf_wav = io.BytesIO(); seg.export(buf_wav, format="wav")
|
74 |
+
wav_key = md5(buf_wav.getvalue())
|
75 |
+
wav_path = os.path.join(TMP_DIR, f"{wav_key}.wav")
|
76 |
+
if not os.path.exists(wav_path):
|
77 |
+
with open(wav_path, "wb") as f: f.write(buf_wav.getvalue())
|
78 |
+
|
79 |
+
# ---- 결과 파일 경로 -----------------------------------------------------
|
80 |
+
out_path = os.path.join(RES_DIR, f"{img_key}_{wav_key}_{scale}.mp4")
|
81 |
+
|
82 |
+
# ---- 캐시 확인 ---------------------------------------------------------
|
83 |
+
if os.path.exists(out_path):
|
84 |
+
print("[INFO] Cached video used.")
|
85 |
+
return out_path
|
86 |
+
|
87 |
+
print(f"[INFO] Generating video (scale={scale}) …")
|
88 |
+
res = get_video_res(img_path, wav_path, out_path, scale)
|
89 |
+
if res == -1:
|
90 |
+
raise gr.Error("No face detected in the image.")
|
91 |
+
return res
|
92 |
+
|
93 |
+
# ------------------------------------------------------------------
|
94 |
+
# Gradio UI
|
95 |
+
# ------------------------------------------------------------------
|
96 |
css = """
|
97 |
+
.gradio-container {font-family: Arial, sans-serif;}
|
98 |
+
.main-header {text-align:center;color:#2a2a2a;margin-bottom:2em;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
"""
|
100 |
|
101 |
with gr.Blocks(css=css) as demo:
|
102 |
+
gr.HTML(
|
103 |
+
"<div class='main-header'>"
|
104 |
+
"<h1>🎭 Sonic: Portrait-to-Video Animator</h1>"
|
105 |
+
"<p>Create talking-head videos (≤60 s audio)</p>"
|
106 |
+
"</div>"
|
107 |
+
)
|
108 |
+
|
109 |
with gr.Row():
|
110 |
with gr.Column():
|
111 |
+
img_in = gr.Image(type="pil", label="Portrait Image")
|
112 |
+
aud_in = gr.Audio(type="numpy", label="Voice/Audio (≤60 s)")
|
113 |
+
scale = gr.Slider(0.5, 2.0, 1.0, 0.1,
|
114 |
+
label="Animation Intensity")
|
115 |
+
btn = gr.Button("Generate", variant="primary")
|
116 |
+
vid_out = gr.Video(label="Generated Animation")
|
117 |
+
|
118 |
+
btn.click(run_sonic, inputs=[img_in, aud_in, scale], outputs=vid_out)
|
119 |
+
|
120 |
+
gr.HTML(
|
121 |
+
"<div style='text-align:center;margin-top:1.5em'>"
|
122 |
+
"<a href='https://github.com/jixiaozhong/Sonic' target='_blank'>GitHub</a> | "
|
123 |
+
"<a href='https://arxiv.org/pdf/2411.16331' target='_blank'>Paper</a>"
|
124 |
+
"</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
+
|
127 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|