🎭 Sonic: Portrait-to-Video Animator
" "Create talking-head videos (≤60 s audio)
" "# --------------------------------------------------------- # app.py (2025-05 rev, aligned with latest sonic.py) # --------------------------------------------------------- import os, io, hashlib, numpy as np, gradio as gr, spaces from pydub import AudioSegment from PIL import Image from sonic import Sonic # ------------------------------------------------------------------ # 1) 모델 & 체크포인트 다운로드 (최초 1회) # ------------------------------------------------------------------ os.system( 'python3 -m pip install "huggingface_hub[cli]" accelerate -q; ' 'huggingface-cli download LeonJoe13/Sonic ' ' --local-dir checkpoints -q; ' 'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt ' ' --local-dir checkpoints/stable-video-diffusion-img2vid-xt -q; ' 'huggingface-cli download openai/whisper-tiny ' ' --local-dir checkpoints/whisper-tiny -q' ) pipe = Sonic() # GPU 초기화 # ------------------------------------------------------------------ def md5(b: bytes) -> str: # 빠른 32-byte 해시 return hashlib.md5(b).hexdigest() TMP_DIR, RES_DIR = "./tmp_path", "./res_path" os.makedirs(TMP_DIR, exist_ok=True) os.makedirs(RES_DIR, exist_ok=True) # ------------------------------------------------------------------ @spaces.GPU(duration=600) # 최대 10분까지 GPU 사용 def get_video_res(img_p: str, wav_p: str, out_p: str, scale: float): """실제 Sonic 파이프라인 호출(얼굴 체크·프레임·interpolate 포함)""" audio = AudioSegment.from_file(wav_p) dur = len(audio) / 1000.0 steps = max(25, min(int(dur * 12.5), 750)) # 12.5fps 기준 print(f"[INFO] Audio duration {dur:.2f}s ➜ steps {steps}") face = pipe.preprocess(img_p) print("[INFO] Face detection:", face) if face["face_num"] == 0: return -1 # 얼굴 없음 pipe.process(img_p, wav_p, out_p, min_resolution=512, inference_steps=steps, dynamic_scale=scale) return out_p # ------------------------------------------------------------------ def run_sonic(image, audio, scale): """Gradio 버튼 연결 함수 (캐싱·전처리)""" if image is None: raise gr.Error("Please upload an image.") if audio is None: raise gr.Error("Please upload an audio file.") # ---- 이미지 저장 & 해시 ------------------------------------------------- buf_img = io.BytesIO(); image.save(buf_img, "PNG") img_key = md5(buf_img.getvalue()) img_path = os.path.join(TMP_DIR, f"{img_key}.png") if not os.path.exists(img_path): with open(img_path, "wb") as f: f.write(buf_img.getvalue()) # ---- 오디오 → mono/16kHz WAV (≤60 s) ----------------------------------- sr, arr = audio[:2] arr = arr if arr.ndim == 2 else arr[:, None] seg = AudioSegment(arr.tobytes(), frame_rate=sr, sample_width=arr.dtype.itemsize, channels=arr.shape[1] ).set_channels(1).set_frame_rate(16_000)[:60_000] buf_wav = io.BytesIO(); seg.export(buf_wav, format="wav") wav_key = md5(buf_wav.getvalue()) wav_path = os.path.join(TMP_DIR, f"{wav_key}.wav") if not os.path.exists(wav_path): with open(wav_path, "wb") as f: f.write(buf_wav.getvalue()) # ---- 결과 파일 경로 ----------------------------------------------------- out_path = os.path.join(RES_DIR, f"{img_key}_{wav_key}_{scale}.mp4") # ---- 캐시 확인 --------------------------------------------------------- if os.path.exists(out_path): print("[INFO] Cached video used.") return out_path print(f"[INFO] Generating video (scale={scale}) …") res = get_video_res(img_path, wav_path, out_path, scale) if res == -1: raise gr.Error("No face detected in the image.") return res # ------------------------------------------------------------------ # Gradio UI # ------------------------------------------------------------------ css = """ .gradio-container {font-family: Arial, sans-serif;} .main-header {text-align:center;color:#2a2a2a;margin-bottom:2em;} """ with gr.Blocks(css=css) as demo: gr.HTML( "
Create talking-head videos (≤60 s audio)
" "