File size: 15,780 Bytes
612b064
79d88c4
 
 
 
 
c3eebaf
79d88c4
137ab16
 
79d88c4
c3eebaf
0537b34
 
c3eebaf
0537b34
 
 
79d88c4
 
6c402fc
79d88c4
c3eebaf
 
 
79d88c4
94fe465
 
 
 
 
c3eebaf
2a1d7cf
79d88c4
c3eebaf
 
 
 
 
1fc29a2
79d88c4
94fe465
c3eebaf
137ab16
729c163
2a1d7cf
 
1fc29a2
2a1d7cf
 
c3eebaf
317219d
94fe465
79d88c4
c3eebaf
317219d
2a1d7cf
79d88c4
 
1fc29a2
c3eebaf
137ab16
244a523
 
 
137ab16
 
0537b34
137ab16
406d112
79d88c4
 
137ab16
c3eebaf
137ab16
c3eebaf
 
 
 
 
 
137ab16
 
 
 
e406956
c3eebaf
 
 
 
 
 
 
79d88c4
137ab16
 
e406956
137ab16
79d88c4
 
 
 
 
e406956
 
 
 
 
 
 
2a1d7cf
 
c3eebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1d7cf
c3eebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729c163
137ab16
 
 
0537b34
94fe465
79d88c4
c3eebaf
 
79d88c4
c3eebaf
 
0537b34
c3eebaf
79d88c4
c3eebaf
79d88c4
 
c3eebaf
 
 
 
79d88c4
317219d
c3eebaf
317219d
 
c3eebaf
137ab16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
 
137ab16
 
 
 
2a1d7cf
137ab16
 
0537b34
137ab16
 
 
 
 
317219d
137ab16
0537b34
137ab16
2a1d7cf
137ab16
 
 
0537b34
857fa09
137ab16
 
 
 
 
 
 
 
0537b34
137ab16
317219d
137ab16
 
 
0537b34
137ab16
 
 
 
 
0537b34
137ab16
 
 
 
 
0537b34
79d88c4
 
 
137ab16
 
857fa09
137ab16
0537b34
137ab16
 
 
 
 
 
 
 
 
 
2a1d7cf
137ab16
 
79d88c4
94fe465
1fc29a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
import io
from sonic import Sonic
from PIL import Image
import torch

# 초기 실행 시 필요한 모델들을 다운로드
cmd = (
    'python3 -m pip install "huggingface_hub[cli]"; '
    'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
    'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir  checkpoints/stable-video-diffusion-img2vid-xt; '
    'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)

pipe = Sonic()

def get_md5(content_bytes):
    """MD5 해시를 계산하여 32자리 문자열을 반환"""
    return hashlib.md5(content_bytes).hexdigest()

tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)


@spaces.GPU(duration=600)  # 긴 비디오 처리를 위해 duration 600초로 설정 (10분)
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
    """
    Sonic pipeline으로부터 실제 비디오를 생성하는 함수.
    최대 60초 길이의 오디오에 대해 inference_steps를 결정하여,
    얼굴 탐지 후 영상 생성 작업을 수행함.
    """
    expand_ratio = 0.0
    min_resolution = 512
    
    # 오디오 길이
    audio = AudioSegment.from_file(audio_path)
    duration = len(audio) / 1000.0  # 초 단위
    
    # 오디오 길이에 따라 inference_steps 계산 (초당 약 12.5 프레임)
    # 최소 25 프레임, 최대 750 프레임 (60초 => 60*12.5=750)
    inference_steps = min(max(int(duration * 12.5), 25), 750)
    
    print(f"[INFO] Audio duration: {duration:.2f} seconds, using inference_steps: {inference_steps}")

    # 얼굴 인식 (face_info는 참고용)
    face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
    print(f"[INFO] Face detection info: {face_info}")

    # 얼굴이 하나라도 검출되면(>0), 원본 이미지 비율 유지
    if face_info['face_num'] > 0:
        os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
        
        # Sonic pipeline으로 비디오 생성
        pipe.process(
            img_path,
            audio_path,
            res_video_path,
            min_resolution=min_resolution,
            inference_steps=inference_steps,
            dynamic_scale=dynamic_scale
        )
        return res_video_path
    else:
        return -1


def process_sonic(image, audio, dynamic_scale):
    """
    Gradio 인터페이스 상에서 호출되는 함수.
    1. 이미지/오디오 입력 검증
    2. MD5 해시 통해 파일명 생성 후 캐싱
    3. 이미 결과 파일이 있으면 재활용, 없으면 새로 비디오 생성
    """
    if image is None:
        raise gr.Error("Please upload an image")
    if audio is None:
        raise gr.Error("Please upload an audio file")

    # 이미지 MD5 해시 계산
    buf_img = io.BytesIO()
    image.save(buf_img, format="PNG")
    img_bytes = buf_img.getvalue()
    img_md5 = get_md5(img_bytes)

    # 오디오 MD5 해시 계산
    sampling_rate, arr = audio[:2]
    if len(arr.shape) == 1:
        arr = arr[:, None]

    audio_segment = AudioSegment(
        arr.tobytes(),
        frame_rate=sampling_rate,
        sample_width=arr.dtype.itemsize,
        channels=arr.shape[1]
    )

    # (중요) Whisper 호환을 위해 mono/16kHz 변환
    audio_segment = audio_segment.set_channels(1)
    audio_segment = audio_segment.set_frame_rate(16000)

    # 최대 60초 제한
    MAX_DURATION_MS = 60000
    if len(audio_segment) > MAX_DURATION_MS:
        audio_segment = audio_segment[:MAX_DURATION_MS]

    buf_audio = io.BytesIO()
    audio_segment.export(buf_audio, format="wav")
    audio_bytes = buf_audio.getvalue()
    audio_md5 = get_md5(audio_bytes)

    # 파일 경로 생성
    image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
    audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
    res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
    
    # 이미지/오디오 파일 캐싱
    if not os.path.exists(image_path):
        with open(image_path, "wb") as f:
            f.write(img_bytes)
    if not os.path.exists(audio_path):
        with open(audio_path, "wb") as f:
            f.write(audio_bytes)
    
    # 이미 결과가 존재하면 캐시된 결과 사용
    if os.path.exists(res_video_path):
        print(f"[INFO] Using cached result: {res_video_path}")
        return res_video_path
    else:
        print(f"[INFO] Generating new video with dynamic_scale={dynamic_scale}")
        video_result = get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
        return video_result


def get_example():
    """예시 데이터를 로딩하는 더미 함수 (현재는 빈 리스트)."""
    return []


css = """
.gradio-container {
    font-family: 'Arial', sans-serif;
}
.main-header {
    text-align: center;
    color: #2a2a2a;
    margin-bottom: 2em;
}
.parameter-section {
    background-color: #f5f5f5;
    padding: 1em;
    border-radius: 8px;
    margin: 1em 0;
}
.example-section {
    margin-top: 2em;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <div class="main-header">
            <h1>🎭 Sonic: Advanced Portrait Animation</h1>
            <p>Transform still images into dynamic videos synchronized with audio (up to 1 minute)</p>
        </div>
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                type='pil',
                label="Portrait Image",
                elem_id="image_input"
            )
            
            audio_input = gr.Audio(
                label="Voice/Audio Input (up to 1 minute)",
                elem_id="audio_input",
                type="numpy"
            )
            
            with gr.Column():
                dynamic_scale = gr.Slider(
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Animation Intensity",
                    info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
                )
            
            process_btn = gr.Button(
                "Generate Animation",
                variant="primary",
                elem_id="process_btn"
            )
        
        with gr.Column():
            video_output = gr.Video(
                label="Generated Animation",
                elem_id="video_output"
            )
    
    process_btn.click(
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
    )
    
    gr.Examples(
        examples=get_example(),
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        cache_examples=False
    )
    
    gr.HTML("""
        <div style="text-align: center; margin-top: 2em;">
            <div style="margin-bottom: 1em;">
                <a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
                </a>
                <a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
                </a>
            </div>
            <p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
        </div>
    """)

# 공개 링크 생성
demo.launch(share=True)
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
import io
from sonic import Sonic
from PIL import Image
import torch

# 초기 실행 시 필요한 모델들을 다운로드
cmd = (
    'python3 -m pip install "huggingface_hub[cli]"; '
    'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
    'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir  checkpoints/stable-video-diffusion-img2vid-xt; '
    'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)

pipe = Sonic()

def get_md5(content_bytes):
    """MD5 해시를 계산하여 32자리 문자열을 반환"""
    return hashlib.md5(content_bytes).hexdigest()

tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)


@spaces.GPU(duration=600)  # 긴 비디오 처리를 위해 duration 600초로 설정 (10분)
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
    """
    Sonic pipeline으로부터 실제 비디오를 생성하는 함수.
    최대 60초 길이의 오디오에 대해 inference_steps를 결정하여,
    얼굴 탐지 후 영상 생성 작업을 수행함.
    """
    expand_ratio = 0.0
    min_resolution = 512
    
    # 오디오 길이
    audio = AudioSegment.from_file(audio_path)
    duration = len(audio) / 1000.0  # 초 단위
    
    # 오디오 길이에 따라 inference_steps 계산 (초당 약 12.5 프레임)
    # 최소 25 프레임, 최대 750 프레임 (60초 => 60*12.5=750)
    inference_steps = min(max(int(duration * 12.5), 25), 750)
    
    print(f"[INFO] Audio duration: {duration:.2f} seconds, using inference_steps: {inference_steps}")

    # 얼굴 인식 (face_info는 참고용)
    face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
    print(f"[INFO] Face detection info: {face_info}")

    # 얼굴이 하나라도 검출되면(>0), 원본 이미지 비율 유지
    if face_info['face_num'] > 0:
        os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
        
        # Sonic pipeline으로 비디오 생성
        pipe.process(
            img_path,
            audio_path,
            res_video_path,
            min_resolution=min_resolution,
            inference_steps=inference_steps,
            dynamic_scale=dynamic_scale
        )
        return res_video_path
    else:
        return -1


def process_sonic(image, audio, dynamic_scale):
    """
    Gradio 인터페이스 상에서 호출되는 함수.
    1. 이미지/오디오 입력 검증
    2. MD5 해시 통해 파일명 생성 후 캐싱
    3. 이미 결과 파일이 있으면 재활용, 없으면 새로 비디오 생성
    """
    if image is None:
        raise gr.Error("Please upload an image")
    if audio is None:
        raise gr.Error("Please upload an audio file")

    # 이미지 MD5 해시 계산
    buf_img = io.BytesIO()
    image.save(buf_img, format="PNG")
    img_bytes = buf_img.getvalue()
    img_md5 = get_md5(img_bytes)

    # 오디오 MD5 해시 계산
    sampling_rate, arr = audio[:2]
    if len(arr.shape) == 1:
        arr = arr[:, None]

    audio_segment = AudioSegment(
        arr.tobytes(),
        frame_rate=sampling_rate,
        sample_width=arr.dtype.itemsize,
        channels=arr.shape[1]
    )

    # (중요) Whisper 호환을 위해 mono/16kHz 변환
    audio_segment = audio_segment.set_channels(1)
    audio_segment = audio_segment.set_frame_rate(16000)

    # 최대 60초 제한
    MAX_DURATION_MS = 60000
    if len(audio_segment) > MAX_DURATION_MS:
        audio_segment = audio_segment[:MAX_DURATION_MS]

    buf_audio = io.BytesIO()
    audio_segment.export(buf_audio, format="wav")
    audio_bytes = buf_audio.getvalue()
    audio_md5 = get_md5(audio_bytes)

    # 파일 경로 생성
    image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
    audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
    res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
    
    # 이미지/오디오 파일 캐싱
    if not os.path.exists(image_path):
        with open(image_path, "wb") as f:
            f.write(img_bytes)
    if not os.path.exists(audio_path):
        with open(audio_path, "wb") as f:
            f.write(audio_bytes)
    
    # 이미 결과가 존재하면 캐시된 결과 사용
    if os.path.exists(res_video_path):
        print(f"[INFO] Using cached result: {res_video_path}")
        return res_video_path
    else:
        print(f"[INFO] Generating new video with dynamic_scale={dynamic_scale}")
        video_result = get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
        return video_result


def get_example():
    """예시 데이터를 로딩하는 더미 함수 (현재는 빈 리스트)."""
    return []


css = """
.gradio-container {
    font-family: 'Arial', sans-serif;
}
.main-header {
    text-align: center;
    color: #2a2a2a;
    margin-bottom: 2em;
}
.parameter-section {
    background-color: #f5f5f5;
    padding: 1em;
    border-radius: 8px;
    margin: 1em 0;
}
.example-section {
    margin-top: 2em;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <div class="main-header">
            <h1>🎭 Sonic: Advanced Portrait Animation</h1>
            <p>Transform still images into dynamic videos synchronized with audio (up to 1 minute)</p>
        </div>
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                type='pil',
                label="Portrait Image",
                elem_id="image_input"
            )
            
            audio_input = gr.Audio(
                label="Voice/Audio Input (up to 1 minute)",
                elem_id="audio_input",
                type="numpy"
            )
            
            with gr.Column():
                dynamic_scale = gr.Slider(
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Animation Intensity",
                    info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
                )
            
            process_btn = gr.Button(
                "Generate Animation",
                variant="primary",
                elem_id="process_btn"
            )
        
        with gr.Column():
            video_output = gr.Video(
                label="Generated Animation",
                elem_id="video_output"
            )
    
    process_btn.click(
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
    )
    
    gr.Examples(
        examples=get_example(),
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        cache_examples=False
    )
    
    gr.HTML("""
        <div style="text-align: center; margin-top: 2em;">
            <div style="margin-bottom: 1em;">
                <a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
                </a>
                <a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
                </a>
            </div>
            <p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
        </div>
    """)

# 공개 링크 생성
demo.launch(share=True)