Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,10 @@ import numpy as np
|
|
5 |
from pydub import AudioSegment
|
6 |
import hashlib
|
7 |
from sonic import Sonic
|
|
|
|
|
8 |
|
|
|
9 |
cmd = 'python3 -m pip install "huggingface_hub[cli]"; \
|
10 |
huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; \
|
11 |
huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; \
|
@@ -19,108 +22,184 @@ def get_md5(content):
|
|
19 |
md5 = md5hash.hexdigest()
|
20 |
return md5
|
21 |
|
22 |
-
@spaces.GPU(duration=
|
23 |
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
24 |
-
|
25 |
expand_ratio = 0.5
|
26 |
min_resolution = 512
|
27 |
inference_steps = 25
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
30 |
-
print(face_info)
|
|
|
|
|
31 |
if face_info['face_num'] > 0:
|
32 |
crop_image_path = img_path + '.crop.png'
|
33 |
pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
|
34 |
img_path = crop_image_path
|
35 |
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
else:
|
38 |
return -1
|
|
|
39 |
tmp_path = './tmp_path/'
|
40 |
res_path = './res_path/'
|
41 |
-
os.makedirs(tmp_path,exist_ok=1)
|
42 |
-
os.makedirs(res_path,exist_ok=1)
|
43 |
|
44 |
-
def process_sonic(image,audio,
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
audio_md5 = get_md5(audio[1])
|
47 |
-
print(img_md5,audio_md5)
|
|
|
48 |
sampling_rate, arr = audio[:2]
|
49 |
-
if len(arr.shape)==1:
|
50 |
-
arr = arr[:,None]
|
51 |
-
|
|
|
|
|
52 |
arr.tobytes(),
|
53 |
frame_rate=sampling_rate,
|
54 |
sample_width=arr.dtype.itemsize,
|
55 |
channels=arr.shape[1]
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
if not os.path.exists(image_path):
|
61 |
image.save(image_path)
|
62 |
if not os.path.exists(audio_path):
|
63 |
-
|
64 |
-
|
|
|
65 |
if os.path.exists(res_video_path):
|
|
|
66 |
return res_video_path
|
67 |
else:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
inputs = [
|
72 |
-
gr.Image(type='pil',label="Upload Image"),
|
73 |
-
gr.Audio(label="Upload Audio"),
|
74 |
-
gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Dynamic scale", info="Increase/decrease to obtain more/less movements"),
|
75 |
-
]
|
76 |
-
outputs = gr.Video(label="output.mp4")
|
77 |
-
|
78 |
-
|
79 |
-
html_description = """
|
80 |
-
<div style="display: flex; justify-content: center; align-items: center;">
|
81 |
-
<a href="https://github.com/jixiaozhong/Sonic.git" style="margin: 0 2px;">
|
82 |
-
<img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
|
83 |
-
</a>
|
84 |
-
<a href="https://arxiv.org/pdf/2411.16331" style="margin: 0 2px;">
|
85 |
-
<img src='https://img.shields.io/badge/arXiv-2411.16331-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
|
86 |
-
</a>
|
87 |
-
<a href='https://jixiaozhong.github.io/Sonic/' style="margin: 0 2px;">
|
88 |
-
<img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
|
89 |
-
</a>
|
90 |
-
<a href="https://github.com/jixiaozhong/Sonic/blob/main/LICENSE" style="margin: 0 2px;">
|
91 |
-
<img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
|
92 |
-
</a>
|
93 |
-
</div>
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
"""
|
99 |
-
TAIL = """
|
100 |
-
<div style="display: flex; justify-content: center; align-items: center;">
|
101 |
-
<a href="https://clustrmaps.com/site/1c38t" title="ClustrMaps"><img src="//www.clustrmaps.com/map_v2.png?d=BI2nzSldyixPC88l8Kev4wjjqsU4IOk7gcvpOijolGI&cl=ffffff" /></a>
|
102 |
-
</div>
|
103 |
-
"""
|
104 |
-
|
105 |
-
def get_example():
|
106 |
-
return [
|
107 |
-
["examples/image/female_diaosu.png", "examples/wav/sing_female_rap_10s.MP3", 1.0],
|
108 |
-
["examples/image/hair.png", "examples/wav/sing_female_10s.wav", 1.0],
|
109 |
-
["examples/image/anime1.png", "examples/wav/talk_female_english_10s.MP3", 1.0],
|
110 |
-
["examples/image/leonnado.jpg", "examples/wav/talk_male_law_10s.wav", 1.0],
|
111 |
-
|
112 |
-
]
|
113 |
|
114 |
-
with gr.Blocks(
|
115 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
gr.Examples(
|
117 |
examples=get_example(),
|
118 |
fn=process_sonic,
|
119 |
-
inputs=
|
120 |
-
outputs=
|
121 |
-
cache_examples=False,
|
122 |
-
|
|
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
|
|
|
5 |
from pydub import AudioSegment
|
6 |
import hashlib
|
7 |
from sonic import Sonic
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
|
11 |
+
# Initialize the model
|
12 |
cmd = 'python3 -m pip install "huggingface_hub[cli]"; \
|
13 |
huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; \
|
14 |
huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; \
|
|
|
22 |
md5 = md5hash.hexdigest()
|
23 |
return md5
|
24 |
|
25 |
+
@spaces.GPU(duration=300) # Increased duration to handle longer videos
|
26 |
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
|
|
27 |
expand_ratio = 0.5
|
28 |
min_resolution = 512
|
29 |
inference_steps = 25
|
30 |
+
|
31 |
+
# Get audio duration
|
32 |
+
audio = AudioSegment.from_file(audio_path)
|
33 |
+
duration = len(audio) / 1000.0 # Convert to seconds
|
34 |
+
|
35 |
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
36 |
+
print(f"Face detection info: {face_info}")
|
37 |
+
print(f"Audio duration: {duration} seconds")
|
38 |
+
|
39 |
if face_info['face_num'] > 0:
|
40 |
crop_image_path = img_path + '.crop.png'
|
41 |
pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
|
42 |
img_path = crop_image_path
|
43 |
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
|
44 |
+
|
45 |
+
# Process with full audio duration
|
46 |
+
pipe.process(
|
47 |
+
img_path,
|
48 |
+
audio_path,
|
49 |
+
res_video_path,
|
50 |
+
min_resolution=min_resolution,
|
51 |
+
inference_steps=inference_steps,
|
52 |
+
dynamic_scale=dynamic_scale,
|
53 |
+
duration=duration # Pass the actual duration
|
54 |
+
)
|
55 |
else:
|
56 |
return -1
|
57 |
+
|
58 |
tmp_path = './tmp_path/'
|
59 |
res_path = './res_path/'
|
60 |
+
os.makedirs(tmp_path, exist_ok=1)
|
61 |
+
os.makedirs(res_path, exist_ok=1)
|
62 |
|
63 |
+
def process_sonic(image, audio, dynamic_scale):
|
64 |
+
# Input validation
|
65 |
+
if image is None:
|
66 |
+
raise gr.Error("Please upload an image")
|
67 |
+
if audio is None:
|
68 |
+
raise gr.Error("Please upload an audio file")
|
69 |
+
|
70 |
+
img_md5 = get_md5(np.array(image))
|
71 |
audio_md5 = get_md5(audio[1])
|
72 |
+
print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
|
73 |
+
|
74 |
sampling_rate, arr = audio[:2]
|
75 |
+
if len(arr.shape) == 1:
|
76 |
+
arr = arr[:, None]
|
77 |
+
|
78 |
+
# Create audio segment
|
79 |
+
audio_segment = AudioSegment(
|
80 |
arr.tobytes(),
|
81 |
frame_rate=sampling_rate,
|
82 |
sample_width=arr.dtype.itemsize,
|
83 |
channels=arr.shape[1]
|
84 |
)
|
85 |
+
audio_segment = audio_segment.set_frame_rate(sampling_rate)
|
86 |
+
|
87 |
+
# Generate paths
|
88 |
+
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
|
89 |
+
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
|
90 |
+
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
|
91 |
+
|
92 |
+
# Save inputs if they don't exist
|
93 |
if not os.path.exists(image_path):
|
94 |
image.save(image_path)
|
95 |
if not os.path.exists(audio_path):
|
96 |
+
audio_segment.export(audio_path, format="wav")
|
97 |
+
|
98 |
+
# Process or return cached result
|
99 |
if os.path.exists(res_video_path):
|
100 |
+
print(f"Using cached result: {res_video_path}")
|
101 |
return res_video_path
|
102 |
else:
|
103 |
+
print(f"Generating new video with dynamic scale: {dynamic_scale}")
|
104 |
+
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Enhanced UI
|
107 |
+
css = """
|
108 |
+
.gradio-container {
|
109 |
+
font-family: 'Arial', sans-serif;
|
110 |
+
}
|
111 |
+
.main-header {
|
112 |
+
text-align: center;
|
113 |
+
color: #2a2a2a;
|
114 |
+
margin-bottom: 2em;
|
115 |
+
}
|
116 |
+
.parameter-section {
|
117 |
+
background-color: #f5f5f5;
|
118 |
+
padding: 1em;
|
119 |
+
border-radius: 8px;
|
120 |
+
margin: 1em 0;
|
121 |
+
}
|
122 |
+
.example-section {
|
123 |
+
margin-top: 2em;
|
124 |
+
}
|
125 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
with gr.Blocks(css=css) as demo:
|
128 |
+
gr.HTML("""
|
129 |
+
<div class="main-header">
|
130 |
+
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
|
131 |
+
<p>Transform still images into dynamic videos synchronized with audio</p>
|
132 |
+
</div>
|
133 |
+
""")
|
134 |
+
|
135 |
+
with gr.Row():
|
136 |
+
with gr.Column():
|
137 |
+
image_input = gr.Image(
|
138 |
+
type='pil',
|
139 |
+
label="Portrait Image",
|
140 |
+
elem_id="image_input",
|
141 |
+
tool="select"
|
142 |
+
)
|
143 |
+
|
144 |
+
audio_input = gr.Audio(
|
145 |
+
label="Voice/Audio Input",
|
146 |
+
elem_id="audio_input",
|
147 |
+
type="numpy"
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Box(elem_classes="parameter-section"):
|
151 |
+
dynamic_scale = gr.Slider(
|
152 |
+
minimum=0.5,
|
153 |
+
maximum=2.0,
|
154 |
+
value=1.0,
|
155 |
+
step=0.1,
|
156 |
+
label="Animation Intensity",
|
157 |
+
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
|
158 |
+
)
|
159 |
+
|
160 |
+
process_btn = gr.Button(
|
161 |
+
"Generate Animation",
|
162 |
+
variant="primary",
|
163 |
+
elem_id="process_btn"
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Column():
|
167 |
+
video_output = gr.Video(
|
168 |
+
label="Generated Animation",
|
169 |
+
elem_id="video_output"
|
170 |
+
)
|
171 |
+
|
172 |
+
# Process button click
|
173 |
+
process_btn.click(
|
174 |
+
fn=process_sonic,
|
175 |
+
inputs=[image_input, audio_input, dynamic_scale],
|
176 |
+
outputs=video_output,
|
177 |
+
api_name="animate"
|
178 |
+
)
|
179 |
+
|
180 |
+
# Examples section
|
181 |
gr.Examples(
|
182 |
examples=get_example(),
|
183 |
fn=process_sonic,
|
184 |
+
inputs=[image_input, audio_input, dynamic_scale],
|
185 |
+
outputs=video_output,
|
186 |
+
cache_examples=False,
|
187 |
+
elem_classes="example-section"
|
188 |
+
)
|
189 |
|
190 |
+
# Footer with attribution and links
|
191 |
+
gr.HTML("""
|
192 |
+
<div style="text-align: center; margin-top: 2em;">
|
193 |
+
<div style="margin-bottom: 1em;">
|
194 |
+
<a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
|
195 |
+
<img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
|
196 |
+
</a>
|
197 |
+
<a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
|
198 |
+
<img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
|
199 |
+
</a>
|
200 |
+
</div>
|
201 |
+
<p>🔔 Note: For optimal results, use clear portrait images and high-quality audio</p>
|
202 |
+
</div>
|
203 |
+
""")
|
204 |
|
205 |
+
demo.launch()
|