Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,18 +9,19 @@ from PIL import Image
|
|
| 9 |
import torch
|
| 10 |
|
| 11 |
# Initialize the model
|
| 12 |
-
cmd =
|
| 13 |
-
|
| 14 |
-
huggingface-cli download
|
| 15 |
-
huggingface-cli download
|
|
|
|
|
|
|
| 16 |
os.system(cmd)
|
| 17 |
|
| 18 |
pipe = Sonic()
|
| 19 |
|
| 20 |
def get_md5(content):
|
| 21 |
md5hash = hashlib.md5(content)
|
| 22 |
-
|
| 23 |
-
return md5
|
| 24 |
|
| 25 |
@spaces.GPU(duration=300) # Increased duration to handle longer videos
|
| 26 |
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
|
@@ -28,9 +29,9 @@ def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
|
| 28 |
min_resolution = 512
|
| 29 |
inference_steps = 25
|
| 30 |
|
| 31 |
-
# Get audio duration
|
| 32 |
audio = AudioSegment.from_file(audio_path)
|
| 33 |
-
duration = len(audio) / 1000.0 #
|
| 34 |
|
| 35 |
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
| 36 |
print(f"Face detection info: {face_info}")
|
|
@@ -42,15 +43,14 @@ def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
|
| 42 |
img_path = crop_image_path
|
| 43 |
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
pipe.process(
|
| 47 |
-
img_path,
|
| 48 |
-
audio_path,
|
| 49 |
-
res_video_path,
|
| 50 |
min_resolution=min_resolution,
|
| 51 |
inference_steps=inference_steps,
|
| 52 |
-
dynamic_scale=dynamic_scale
|
| 53 |
-
duration=duration # Pass the actual duration
|
| 54 |
)
|
| 55 |
else:
|
| 56 |
return -1
|
|
@@ -61,21 +61,21 @@ os.makedirs(tmp_path, exist_ok=True)
|
|
| 61 |
os.makedirs(res_path, exist_ok=True)
|
| 62 |
|
| 63 |
def process_sonic(image, audio, dynamic_scale):
|
| 64 |
-
#
|
| 65 |
if image is None:
|
| 66 |
raise gr.Error("Please upload an image")
|
| 67 |
if audio is None:
|
| 68 |
raise gr.Error("Please upload an audio file")
|
| 69 |
-
|
| 70 |
img_md5 = get_md5(np.array(image))
|
| 71 |
audio_md5 = get_md5(audio[1])
|
| 72 |
print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
|
| 73 |
-
|
| 74 |
sampling_rate, arr = audio[:2]
|
| 75 |
if len(arr.shape) == 1:
|
| 76 |
arr = arr[:, None]
|
| 77 |
-
|
| 78 |
-
#
|
| 79 |
audio_segment = AudioSegment(
|
| 80 |
arr.tobytes(),
|
| 81 |
frame_rate=sampling_rate,
|
|
@@ -83,19 +83,19 @@ def process_sonic(image, audio, dynamic_scale):
|
|
| 83 |
channels=arr.shape[1]
|
| 84 |
)
|
| 85 |
audio_segment = audio_segment.set_frame_rate(sampling_rate)
|
| 86 |
-
|
| 87 |
-
#
|
| 88 |
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
|
| 89 |
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
|
| 90 |
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
if not os.path.exists(image_path):
|
| 94 |
image.save(image_path)
|
| 95 |
if not os.path.exists(audio_path):
|
| 96 |
audio_segment.export(audio_path, format="wav")
|
| 97 |
-
|
| 98 |
-
#
|
| 99 |
if os.path.exists(res_video_path):
|
| 100 |
print(f"Using cached result: {res_video_path}")
|
| 101 |
return res_video_path
|
|
@@ -103,12 +103,10 @@ def process_sonic(image, audio, dynamic_scale):
|
|
| 103 |
print(f"Generating new video with dynamic scale: {dynamic_scale}")
|
| 104 |
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
| 105 |
|
| 106 |
-
#
|
| 107 |
def get_example():
|
| 108 |
-
# 예시가 없다면 빈 리스트를 반환하거나 실제 예시 데이터를 입력할 수 있습니다.
|
| 109 |
return []
|
| 110 |
|
| 111 |
-
# Enhanced UI
|
| 112 |
css = """
|
| 113 |
.gradio-container {
|
| 114 |
font-family: 'Arial', sans-serif;
|
|
@@ -136,7 +134,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 136 |
<p>Transform still images into dynamic videos synchronized with audio</p>
|
| 137 |
</div>
|
| 138 |
""")
|
| 139 |
-
|
| 140 |
with gr.Row():
|
| 141 |
with gr.Column():
|
| 142 |
image_input = gr.Image(
|
|
@@ -144,13 +142,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 144 |
label="Portrait Image",
|
| 145 |
elem_id="image_input"
|
| 146 |
)
|
| 147 |
-
|
| 148 |
audio_input = gr.Audio(
|
| 149 |
label="Voice/Audio Input",
|
| 150 |
elem_id="audio_input",
|
| 151 |
type="numpy"
|
| 152 |
)
|
| 153 |
-
|
| 154 |
with gr.Column():
|
| 155 |
dynamic_scale = gr.Slider(
|
| 156 |
minimum=0.5,
|
|
@@ -160,28 +158,28 @@ with gr.Blocks(css=css) as demo:
|
|
| 160 |
label="Animation Intensity",
|
| 161 |
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
|
| 162 |
)
|
| 163 |
-
|
| 164 |
process_btn = gr.Button(
|
| 165 |
"Generate Animation",
|
| 166 |
variant="primary",
|
| 167 |
elem_id="process_btn"
|
| 168 |
)
|
| 169 |
-
|
| 170 |
with gr.Column():
|
| 171 |
video_output = gr.Video(
|
| 172 |
label="Generated Animation",
|
| 173 |
elem_id="video_output"
|
| 174 |
)
|
| 175 |
-
|
| 176 |
-
#
|
| 177 |
process_btn.click(
|
| 178 |
fn=process_sonic,
|
| 179 |
inputs=[image_input, audio_input, dynamic_scale],
|
| 180 |
outputs=video_output,
|
| 181 |
api_name="animate"
|
| 182 |
)
|
| 183 |
-
|
| 184 |
-
#
|
| 185 |
gr.Examples(
|
| 186 |
examples=get_example(),
|
| 187 |
fn=process_sonic,
|
|
@@ -189,8 +187,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 189 |
outputs=video_output,
|
| 190 |
cache_examples=False
|
| 191 |
)
|
| 192 |
-
|
| 193 |
-
# Footer
|
| 194 |
gr.HTML("""
|
| 195 |
<div style="text-align: center; margin-top: 2em;">
|
| 196 |
<div style="margin-bottom: 1em;">
|
|
@@ -205,4 +203,5 @@ with gr.Blocks(css=css) as demo:
|
|
| 205 |
</div>
|
| 206 |
""")
|
| 207 |
|
| 208 |
-
|
|
|
|
|
|
| 9 |
import torch
|
| 10 |
|
| 11 |
# Initialize the model
|
| 12 |
+
cmd = (
|
| 13 |
+
'python3 -m pip install "huggingface_hub[cli]"; '
|
| 14 |
+
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
|
| 15 |
+
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
|
| 16 |
+
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
|
| 17 |
+
)
|
| 18 |
os.system(cmd)
|
| 19 |
|
| 20 |
pipe = Sonic()
|
| 21 |
|
| 22 |
def get_md5(content):
|
| 23 |
md5hash = hashlib.md5(content)
|
| 24 |
+
return md5hash.hexdigest()
|
|
|
|
| 25 |
|
| 26 |
@spaces.GPU(duration=300) # Increased duration to handle longer videos
|
| 27 |
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
|
|
|
| 29 |
min_resolution = 512
|
| 30 |
inference_steps = 25
|
| 31 |
|
| 32 |
+
# Get audio duration (정보 출력용)
|
| 33 |
audio = AudioSegment.from_file(audio_path)
|
| 34 |
+
duration = len(audio) / 1000.0 # 초 단위 변환
|
| 35 |
|
| 36 |
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
| 37 |
print(f"Face detection info: {face_info}")
|
|
|
|
| 43 |
img_path = crop_image_path
|
| 44 |
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
|
| 45 |
|
| 46 |
+
# NOTE: Sonic.process()는 더 이상 duration 인자를 받지 않으므로 제거합니다.
|
| 47 |
pipe.process(
|
| 48 |
+
img_path,
|
| 49 |
+
audio_path,
|
| 50 |
+
res_video_path,
|
| 51 |
min_resolution=min_resolution,
|
| 52 |
inference_steps=inference_steps,
|
| 53 |
+
dynamic_scale=dynamic_scale
|
|
|
|
| 54 |
)
|
| 55 |
else:
|
| 56 |
return -1
|
|
|
|
| 61 |
os.makedirs(res_path, exist_ok=True)
|
| 62 |
|
| 63 |
def process_sonic(image, audio, dynamic_scale):
|
| 64 |
+
# 입력 검증
|
| 65 |
if image is None:
|
| 66 |
raise gr.Error("Please upload an image")
|
| 67 |
if audio is None:
|
| 68 |
raise gr.Error("Please upload an audio file")
|
| 69 |
+
|
| 70 |
img_md5 = get_md5(np.array(image))
|
| 71 |
audio_md5 = get_md5(audio[1])
|
| 72 |
print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
|
| 73 |
+
|
| 74 |
sampling_rate, arr = audio[:2]
|
| 75 |
if len(arr.shape) == 1:
|
| 76 |
arr = arr[:, None]
|
| 77 |
+
|
| 78 |
+
# 오디오 세그먼트 생성
|
| 79 |
audio_segment = AudioSegment(
|
| 80 |
arr.tobytes(),
|
| 81 |
frame_rate=sampling_rate,
|
|
|
|
| 83 |
channels=arr.shape[1]
|
| 84 |
)
|
| 85 |
audio_segment = audio_segment.set_frame_rate(sampling_rate)
|
| 86 |
+
|
| 87 |
+
# 파일 경로 생성
|
| 88 |
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
|
| 89 |
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
|
| 90 |
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
|
| 91 |
+
|
| 92 |
+
# 입력 파일이 없으면 저장
|
| 93 |
if not os.path.exists(image_path):
|
| 94 |
image.save(image_path)
|
| 95 |
if not os.path.exists(audio_path):
|
| 96 |
audio_segment.export(audio_path, format="wav")
|
| 97 |
+
|
| 98 |
+
# 캐시된 결과가 있으면 반환, 없으면 새로 생성
|
| 99 |
if os.path.exists(res_video_path):
|
| 100 |
print(f"Using cached result: {res_video_path}")
|
| 101 |
return res_video_path
|
|
|
|
| 103 |
print(f"Generating new video with dynamic scale: {dynamic_scale}")
|
| 104 |
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
| 105 |
|
| 106 |
+
# 예시 데이터를 위한 dummy 함수 (필요에 따라 실제 예시 데이터를 넣으세요)
|
| 107 |
def get_example():
|
|
|
|
| 108 |
return []
|
| 109 |
|
|
|
|
| 110 |
css = """
|
| 111 |
.gradio-container {
|
| 112 |
font-family: 'Arial', sans-serif;
|
|
|
|
| 134 |
<p>Transform still images into dynamic videos synchronized with audio</p>
|
| 135 |
</div>
|
| 136 |
""")
|
| 137 |
+
|
| 138 |
with gr.Row():
|
| 139 |
with gr.Column():
|
| 140 |
image_input = gr.Image(
|
|
|
|
| 142 |
label="Portrait Image",
|
| 143 |
elem_id="image_input"
|
| 144 |
)
|
| 145 |
+
|
| 146 |
audio_input = gr.Audio(
|
| 147 |
label="Voice/Audio Input",
|
| 148 |
elem_id="audio_input",
|
| 149 |
type="numpy"
|
| 150 |
)
|
| 151 |
+
|
| 152 |
with gr.Column():
|
| 153 |
dynamic_scale = gr.Slider(
|
| 154 |
minimum=0.5,
|
|
|
|
| 158 |
label="Animation Intensity",
|
| 159 |
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
|
| 160 |
)
|
| 161 |
+
|
| 162 |
process_btn = gr.Button(
|
| 163 |
"Generate Animation",
|
| 164 |
variant="primary",
|
| 165 |
elem_id="process_btn"
|
| 166 |
)
|
| 167 |
+
|
| 168 |
with gr.Column():
|
| 169 |
video_output = gr.Video(
|
| 170 |
label="Generated Animation",
|
| 171 |
elem_id="video_output"
|
| 172 |
)
|
| 173 |
+
|
| 174 |
+
# 버튼 클릭 시 애니메이션 생성 함수 호출
|
| 175 |
process_btn.click(
|
| 176 |
fn=process_sonic,
|
| 177 |
inputs=[image_input, audio_input, dynamic_scale],
|
| 178 |
outputs=video_output,
|
| 179 |
api_name="animate"
|
| 180 |
)
|
| 181 |
+
|
| 182 |
+
# 예시 섹션
|
| 183 |
gr.Examples(
|
| 184 |
examples=get_example(),
|
| 185 |
fn=process_sonic,
|
|
|
|
| 187 |
outputs=video_output,
|
| 188 |
cache_examples=False
|
| 189 |
)
|
| 190 |
+
|
| 191 |
+
# Footer: Attribution & Links
|
| 192 |
gr.HTML("""
|
| 193 |
<div style="text-align: center; margin-top: 2em;">
|
| 194 |
<div style="margin-bottom: 1em;">
|
|
|
|
| 203 |
</div>
|
| 204 |
""")
|
| 205 |
|
| 206 |
+
# 공유 링크 생성: share=True
|
| 207 |
+
demo.launch(share=True)
|