Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,439 Bytes
612b064 79d88c4 c3eebaf 79d88c4 137ab16 79d88c4 c3eebaf 0537b34 cca593e c3eebaf 0537b34 79d88c4 6c402fc 79d88c4 0c85fa1 c3eebaf 79d88c4 94fe465 2a1d7cf 79d88c4 c3eebaf 1fc29a2 79d88c4 94fe465 cca593e 137ab16 729c163 2a1d7cf cca593e 2a1d7cf 0c85fa1 317219d cca593e 79d88c4 c3eebaf 317219d cca593e 79d88c4 137ab16 244a523 137ab16 0537b34 137ab16 406d112 79d88c4 cca593e 79d88c4 137ab16 c3eebaf cca593e c3eebaf 137ab16 e406956 cca593e c3eebaf cca593e 79d88c4 137ab16 79d88c4 cca593e e406956 2a1d7cf c3eebaf cca593e c3eebaf cca593e c3eebaf 137ab16 79d88c4 137ab16 2a1d7cf 137ab16 0537b34 137ab16 317219d 137ab16 2a1d7cf 137ab16 857fa09 137ab16 317219d 137ab16 0537b34 137ab16 0537b34 137ab16 0537b34 79d88c4 137ab16 857fa09 137ab16 0537b34 137ab16 2a1d7cf 137ab16 79d88c4 1fc29a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
import io
from sonic import Sonic
from PIL import Image
import torch
# 초기 실행 시 필요한 모델들을 다운로드
cmd = (
'python3 -m pip install "huggingface_hub[cli]" accelerate; '
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)
pipe = Sonic()
def get_md5(content_bytes: bytes):
"""MD5 해시를 계산하여 32자리 문자열을 반환"""
return hashlib.md5(content_bytes).hexdigest()
tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)
@spaces.GPU(duration=600) # 긴 비디오 처리를 위해 duration 600초로 설정 (10분)
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
"""
Sonic pipeline으로부터 실제 비디오를 생성하는 함수.
최대 60초 길이의 오디오에 대해 inference_steps를 결정하여,
얼굴 탐지 후 영상 생성 작업을 수행함.
"""
expand_ratio = 0.0
min_resolution = 512
# 오디오 길이 계산
audio = AudioSegment.from_file(audio_path)
duration = len(audio) / 1000.0 # 초 단위
# 오디오 길이에 따라 inference_steps 결정 (최소 25프레임 ~ 최대 750프레임)
inference_steps = min(max(int(duration * 12.5), 25), 750)
print(f"[INFO] Audio duration: {duration:.2f} seconds, using inference_steps={inference_steps}")
# 얼굴 인식
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
print(f"[INFO] Face detection info: {face_info}")
# 얼굴이 하나라도 검출되면 -> pipeline 진행
if face_info['face_num'] > 0:
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
pipe.process(
img_path,
audio_path,
res_video_path,
min_resolution=min_resolution,
inference_steps=inference_steps,
dynamic_scale=dynamic_scale
)
return res_video_path
else:
# 얼굴이 전혀 없으면 -1 리턴
return -1
def process_sonic(image, audio, dynamic_scale):
"""
Gradio 인터페이스에서 호출되는 함수:
1. 이미지/오디오 검사
2. MD5 해시 -> 파일명
3. 캐시 검사 -> 없으면 영상 생성
"""
if image is None:
raise gr.Error("Please upload an image")
if audio is None:
raise gr.Error("Please upload an audio file")
# (1) 이미지 MD5
buf_img = io.BytesIO()
image.save(buf_img, format="PNG")
img_bytes = buf_img.getvalue()
img_md5 = get_md5(img_bytes)
# (2) 오디오 MD5
sampling_rate, arr = audio[:2]
if len(arr.shape) == 1:
arr = arr[:, None]
audio_segment = AudioSegment(
arr.tobytes(),
frame_rate=sampling_rate,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1]
)
# Whisper 호환을 위해 mono/16kHz로 변환
audio_segment = audio_segment.set_channels(1).set_frame_rate(16000)
MAX_DURATION_MS = 60000
if len(audio_segment) > MAX_DURATION_MS:
audio_segment = audio_segment[:MAX_DURATION_MS]
buf_audio = io.BytesIO()
audio_segment.export(buf_audio, format="wav")
audio_bytes = buf_audio.getvalue()
audio_md5 = get_md5(audio_bytes)
# (3) 파일 경로
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
if not os.path.exists(image_path):
with open(image_path, "wb") as f:
f.write(img_bytes)
if not os.path.exists(audio_path):
with open(audio_path, "wb") as f:
f.write(audio_bytes)
# (4) 캐싱된 결과가 있으면 재사용
if os.path.exists(res_video_path):
print(f"[INFO] Using cached result: {res_video_path}")
return res_video_path
else:
print(f"[INFO] Generating new video with dynamic_scale={dynamic_scale}")
video_result = get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
return video_result
def get_example():
return []
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-header {
text-align: center;
color: #2a2a2a;
margin-bottom: 2em;
}
.parameter-section {
background-color: #f5f5f5;
padding: 1em;
border-radius: 8px;
margin: 1em 0;
}
.example-section {
margin-top: 2em;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div class="main-header">
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
<p>Transform still images into dynamic videos synchronized with audio (up to 1 minute)</p>
</div>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type='pil',
label="Portrait Image",
elem_id="image_input"
)
audio_input = gr.Audio(
label="Voice/Audio Input (up to 1 minute)",
elem_id="audio_input",
type="numpy"
)
with gr.Column():
dynamic_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Animation Intensity",
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
)
process_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_id="process_btn"
)
with gr.Column():
video_output = gr.Video(
label="Generated Animation",
elem_id="video_output"
)
process_btn.click(
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
)
gr.Examples(
examples=get_example(),
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
cache_examples=False
)
gr.HTML("""
<div style="text-align: center; margin-top: 2em;">
<div style="margin-bottom: 1em;">
<a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
</a>
<a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
</a>
</div>
<p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
</div>
""")
demo.launch(share=True)
|