File size: 6,983 Bytes
612b064
79d88c4
 
 
 
 
 
137ab16
 
79d88c4
137ab16
0537b34
 
 
 
 
 
79d88c4
 
6c402fc
79d88c4
 
 
0537b34
79d88c4
137ab16
79d88c4
 
 
729c163
317219d
729c163
137ab16
729c163
 
 
 
317219d
79d88c4
137ab16
317219d
79d88c4
 
 
 
 
317219d
729c163
137ab16
0537b34
 
 
137ab16
 
0537b34
137ab16
729c163
406d112
79d88c4
 
137ab16
79d88c4
 
317219d
 
79d88c4
137ab16
729c163
137ab16
 
 
 
0537b34
137ab16
79d88c4
137ab16
0537b34
79d88c4
137ab16
 
0537b34
729c163
137ab16
79d88c4
 
 
 
 
137ab16
0537b34
729c163
137ab16
 
 
0537b34
729c163
79d88c4
 
 
137ab16
0537b34
729c163
79d88c4
137ab16
79d88c4
 
137ab16
 
79d88c4
729c163
317219d
 
 
137ab16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
 
137ab16
 
 
 
 
 
 
0537b34
137ab16
 
 
 
 
317219d
137ab16
0537b34
137ab16
 
 
 
 
0537b34
857fa09
137ab16
 
 
 
 
 
 
 
0537b34
137ab16
317219d
137ab16
 
 
0537b34
137ab16
 
 
 
 
0537b34
137ab16
 
 
 
 
 
0537b34
79d88c4
 
 
137ab16
 
857fa09
137ab16
0537b34
137ab16
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
729c163
0537b34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch

# Initialize the model
cmd = (
    'python3 -m pip install "huggingface_hub[cli]"; '
    'huggingface-cli download LeonJoe13/Sonic --local-dir  checkpoints; '
    'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir  checkpoints/stable-video-diffusion-img2vid-xt; '
    'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)

pipe = Sonic()

def get_md5(content):
    md5hash = hashlib.md5(content)
    return md5hash.hexdigest()

@spaces.GPU(duration=300)  # Increased duration to handle longer videos
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
    expand_ratio = 0.5
    min_resolution = 512
    fps = 25  # 원하는 프레임 레이트 설정 (예: 25 fps)

    # 오디오 파일로부터 실제 오디오 길이를 구하고, 그에 맞춰 추론 단계를 계산합니다.
    audio = AudioSegment.from_file(audio_path)
    duration = len(audio) / 1000.0  # 초 단위
    # 오디오 길이에 따른 프레임 수 계산 (예: 5초 -> 5*25 = 125 단계)
    inference_steps = int(duration * fps)
    print(f"Audio duration: {duration} seconds, using inference_steps: {inference_steps}")

    face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
    print(f"Face detection info: {face_info}")

    if face_info['face_num'] > 0:
        crop_image_path = img_path + '.crop.png'
        pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
        img_path = crop_image_path
        os.makedirs(os.path.dirname(res_video_path), exist_ok=True)

        # Sonic.process() 호출 시, 동적으로 계산된 inference_steps를 전달합니다.
        pipe.process(
            img_path, 
            audio_path, 
            res_video_path, 
            min_resolution=min_resolution,
            inference_steps=inference_steps,
            dynamic_scale=dynamic_scale
        )
        # 생성된 비디오 파일 경로 반환
        return res_video_path
    else:
        return -1

tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)

def process_sonic(image, audio, dynamic_scale):
    # 입력 검증
    if image is None:
        raise gr.Error("Please upload an image")
    if audio is None:
        raise gr.Error("Please upload an audio file")
        
    img_md5 = get_md5(np.array(image))
    audio_md5 = get_md5(audio[1])
    print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
    
    sampling_rate, arr = audio[:2]
    if len(arr.shape) == 1:
        arr = arr[:, None]
    
    # numpy array로부터 AudioSegment 생성
    audio_segment = AudioSegment(
        arr.tobytes(),
        frame_rate=sampling_rate,
        sample_width=arr.dtype.itemsize,
        channels=arr.shape[1]
    )
    audio_segment = audio_segment.set_frame_rate(sampling_rate)
    
    # 파일 경로 생성
    image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
    audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
    res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
    
    # 입력 파일이 없으면 저장
    if not os.path.exists(image_path):
        image.save(image_path)
    if not os.path.exists(audio_path):
        audio_segment.export(audio_path, format="wav")
    
    # 캐시된 결과가 있으면 반환, 없으면 새로 생성
    if os.path.exists(res_video_path):
        print(f"Using cached result: {res_video_path}")
        return res_video_path
    else:
        print(f"Generating new video with dynamic scale: {dynamic_scale}")
        return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)

# 예시 데이터를 위한 dummy 함수 (필요시 실제 예시 데이터로 수정)
def get_example():
    return []

css = """
.gradio-container {
    font-family: 'Arial', sans-serif;
}
.main-header {
    text-align: center;
    color: #2a2a2a;
    margin-bottom: 2em;
}
.parameter-section {
    background-color: #f5f5f5;
    padding: 1em;
    border-radius: 8px;
    margin: 1em 0;
}
.example-section {
    margin-top: 2em;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <div class="main-header">
            <h1>🎭 Sonic: Advanced Portrait Animation</h1>
            <p>Transform still images into dynamic videos synchronized with audio</p>
        </div>
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                type='pil',
                label="Portrait Image",
                elem_id="image_input"
            )
            
            audio_input = gr.Audio(
                label="Voice/Audio Input",
                elem_id="audio_input",
                type="numpy"
            )
            
            with gr.Column():
                dynamic_scale = gr.Slider(
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Animation Intensity",
                    info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
                )
            
            process_btn = gr.Button(
                "Generate Animation",
                variant="primary",
                elem_id="process_btn"
            )
        
        with gr.Column():
            video_output = gr.Video(
                label="Generated Animation",
                elem_id="video_output"
            )
    
    process_btn.click(
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        api_name="animate"
    )
    
    gr.Examples(
        examples=get_example(),
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        cache_examples=False
    )
    
    gr.HTML("""
        <div style="text-align: center; margin-top: 2em;">
            <div style="margin-bottom: 1em;">
                <a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
                </a>
                <a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
                </a>
            </div>
            <p>🔔 Note: For optimal results, use clear portrait images and high-quality audio</p>
        </div>
    """)

# 공개 링크를 생성하려면 share=True 옵션 사용
demo.launch(share=True)