Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,134 Bytes
612b064 79d88c4 137ab16 79d88c4 244a523 0537b34 79d88c4 6c402fc 79d88c4 0537b34 79d88c4 94fe465 2a1d7cf 79d88c4 94fe465 1fc29a2 94fe465 1fc29a2 79d88c4 94fe465 1fc29a2 137ab16 729c163 2a1d7cf 1fc29a2 2a1d7cf 1fc29a2 317219d 94fe465 79d88c4 137ab16 317219d 2a1d7cf 79d88c4 1fc29a2 137ab16 244a523 137ab16 0537b34 137ab16 406d112 79d88c4 137ab16 729c163 137ab16 0537b34 137ab16 79d88c4 137ab16 0537b34 79d88c4 137ab16 0537b34 94fe465 137ab16 79d88c4 137ab16 0537b34 2a1d7cf 1fc29a2 2a1d7cf 729c163 137ab16 0537b34 94fe465 79d88c4 137ab16 0537b34 1fc29a2 79d88c4 137ab16 79d88c4 137ab16 79d88c4 1fc29a2 317219d 137ab16 79d88c4 137ab16 2a1d7cf 137ab16 0537b34 137ab16 317219d 137ab16 0537b34 137ab16 2a1d7cf 137ab16 0537b34 857fa09 137ab16 0537b34 137ab16 317219d 137ab16 0537b34 137ab16 0537b34 137ab16 0537b34 79d88c4 137ab16 857fa09 137ab16 0537b34 137ab16 2a1d7cf 137ab16 79d88c4 94fe465 1fc29a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch
# 모델 초기화
cmd = (
'python3 -m pip install "huggingface_hub[cli]"; '
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)
pipe = Sonic()
def get_md5(content):
md5hash = hashlib.md5(content)
return md5hash.hexdigest()
tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)
@spaces.GPU(duration=600) # 긴 비디오 처리를 위해 duration 600초로 설정 (10분)
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
# ============================
# 최대 60초까지 오디오를 반영
# ============================
expand_ratio = 0.0
min_resolution = 512
# pydub으로 오디오 길이 계산
audio = AudioSegment.from_file(audio_path)
duration = len(audio) / 1000.0 # 초 단위
# 오디오 길이에 따라 inference_steps 계산 (초당 약 12.5 프레임)
# 최소 25 프레임, 최대 750 프레임 (60초 => 60*12.5=750)
inference_steps = min(max(int(duration * 12.5), 25), 750)
print(f"Audio duration: {duration:.2f} seconds, using inference_steps: {inference_steps}")
# 얼굴 인식 (face_info는 참고용)
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
print(f"Face detection info: {face_info}")
# 얼굴이 하나라도 검출되면(>0), 원본 이미지 비율 유지
if face_info['face_num'] > 0:
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
pipe.process(
img_path,
audio_path,
res_video_path,
min_resolution=min_resolution,
inference_steps=inference_steps,
dynamic_scale=dynamic_scale
)
return res_video_path
else:
return -1
def process_sonic(image, audio, dynamic_scale):
# 입력 검증
if image is None:
raise gr.Error("Please upload an image")
if audio is None:
raise gr.Error("Please upload an audio file")
img_md5 = get_md5(np.array(image))
audio_md5 = get_md5(audio[1])
print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
sampling_rate, arr = audio[:2]
if len(arr.shape) == 1:
arr = arr[:, None]
# numpy array -> AudioSegment 변환
audio_segment = AudioSegment(
arr.tobytes(),
frame_rate=sampling_rate,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1]
)
audio_segment = audio_segment.set_frame_rate(sampling_rate)
# 오디오 길이 제한 확인 (최대 60초)
MAX_DURATION_MS = 60000 # 60초
if len(audio_segment) > MAX_DURATION_MS:
print(f"Audio longer than 60 seconds ({len(audio_segment)/1000:.2f}s). Truncating to 60 seconds.")
audio_segment = audio_segment[:MAX_DURATION_MS]
# 파일 경로 생성
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
# 이미지/오디오 파일 캐싱
if not os.path.exists(image_path):
image.save(image_path)
if not os.path.exists(audio_path):
audio_segment.export(audio_path, format="wav")
# 캐시된 결과가 있으면 바로 사용
if os.path.exists(res_video_path):
print(f"Using cached result: {res_video_path}")
return res_video_path
else:
print(f"Generating new video with dynamic scale: {dynamic_scale}")
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
# 예시 데이터를 위한 dummy 함수
def get_example():
return []
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-header {
text-align: center;
color: #2a2a2a;
margin-bottom: 2em;
}
.parameter-section {
background-color: #f5f5f5;
padding: 1em;
border-radius: 8px;
margin: 1em 0;
}
.example-section {
margin-top: 2em;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div class="main-header">
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
<p>Transform still images into dynamic videos synchronized with audio (up to 1 minute)</p>
</div>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type='pil',
label="Portrait Image",
elem_id="image_input"
)
audio_input = gr.Audio(
label="Voice/Audio Input (up to 1 minute)",
elem_id="audio_input",
type="numpy"
)
with gr.Column():
dynamic_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Animation Intensity",
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
)
process_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_id="process_btn"
)
with gr.Column():
video_output = gr.Video(
label="Generated Animation",
elem_id="video_output"
)
process_btn.click(
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
)
gr.Examples(
examples=get_example(),
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
cache_examples=False
)
gr.HTML("""
<div style="text-align: center; margin-top: 2em;">
<div style="margin-bottom: 1em;">
<a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
</a>
<a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
</a>
</div>
<p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
</div>
""")
# 공개 링크 생성
demo.launch(share=True)
|