Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import glob | |
import gc | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling, | |
AutoTokenizer, | |
LlamaConfig, | |
AutoConfig | |
) | |
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training | |
from datasets import Dataset | |
from huggingface_hub import snapshot_download | |
from tqdm import tqdm | |
import gradio as gr | |
import math | |
from accelerate import Accelerator | |
import subprocess | |
import sys | |
import json | |
import shutil | |
import traceback | |
# --- Configuration --- | |
YOUR_HF_USERNAME = "Twelve2five" | |
MODEL_REPO_NAME = "llama-3-8b-rvq-resized" | |
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items" | |
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}" | |
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}" | |
# Output directories | |
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run" | |
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run" | |
local_download_path = "./downloaded_dataset_files" | |
# Training parameters | |
NUM_EPOCHS = 1 | |
BATCH_SIZE_PER_DEVICE = 1 | |
GRAD_ACCUMULATION_STEPS = 64 | |
LEARNING_RATE = 1e-4 | |
WEIGHT_DECAY = 0.01 | |
WARMUP_RATIO = 0.03 | |
LR_SCHEDULER = "cosine" | |
OPTIMIZER = "paged_adamw_8bit" | |
MAX_SEQ_LENGTH = 256 | |
MICRO_BATCH_SIZE = 1 | |
# Multi-GPU configuration | |
accelerator = Accelerator() | |
# Configure environment for multi-GPU | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32" | |
# Print GPU information | |
print(f"Available GPUs: {torch.cuda.device_count()}") | |
for i in range(torch.cuda.device_count()): | |
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB") | |
def seq2seq_causal_collator(features): | |
""" | |
Collator that concatenates context (input_ids) and target (labels) | |
for Causal LM sequence-to-sequence training. | |
Masks the loss for the context part of the sequence. | |
Pads sequences to the maximum length in the batch. | |
""" | |
batch = {} | |
concatenated_input_ids = [] | |
concatenated_labels = [] | |
max_len = 0 | |
# --- First pass: Concatenate, create masked labels, find max length --- | |
for feature in features: | |
# Dataset transform should provide tensors here | |
input_ids = feature['input_ids'] | |
labels = feature['labels'] | |
# Ensure tensors are 1D (handle potential extra dims if any) | |
if input_ids.dim() > 1: input_ids = input_ids.squeeze() | |
if labels.dim() > 1: labels = labels.squeeze() | |
context_len = input_ids.shape[0] | |
target_len = labels.shape[0] | |
# Concatenate context and target for input | |
combined_ids = torch.cat([input_ids, labels], dim=0) | |
concatenated_input_ids.append(combined_ids) | |
# Create labels: -100 for context, actual labels for target | |
masked_labels = torch.cat([ | |
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device), | |
labels | |
], dim=0) | |
concatenated_labels.append(masked_labels) | |
# Track max length for padding | |
if combined_ids.shape[0] > max_len: | |
max_len = combined_ids.shape[0] | |
# --- Second pass: Pad to max length --- | |
padded_input_ids = [] | |
padded_labels = [] | |
input_pad_token_id = 0 | |
label_pad_token_id = -100 | |
for i in range(len(features)): | |
ids = concatenated_input_ids[i] | |
lbls = concatenated_labels[i] | |
padding_len = max_len - ids.shape[0] | |
# Pad on the right side | |
padded_input_ids.append(torch.nn.functional.pad( | |
ids, (0, padding_len), value=input_pad_token_id | |
)) | |
padded_labels.append(torch.nn.functional.pad( | |
lbls, (0, padding_len), value=label_pad_token_id | |
)) | |
# --- Stack and create final batch --- | |
batch['input_ids'] = torch.stack(padded_input_ids) | |
batch['labels'] = torch.stack(padded_labels) | |
# Create attention mask (1 for real tokens, 0 for padding) | |
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long() | |
return batch | |
def prepare_for_dataset(batch): | |
output = {'input_ids': [], 'labels': []} | |
for item in batch: | |
output['input_ids'].append(item['input_ids'].cpu().tolist()) | |
output['labels'].append(item['labels'].cpu().tolist()) | |
return output | |
def load_model(): | |
print(f"Loading base model architecture from: {hf_model_repo_id}") | |
# Get information about GPU with most free memory | |
gpu_id = 0 # Default to first GPU | |
max_free_memory = 0 | |
for i in range(torch.cuda.device_count()): | |
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i) | |
if free_memory > max_free_memory: | |
max_free_memory = free_memory | |
gpu_id = i | |
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory") | |
# Configure quantization | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
# Load the model | |
try: | |
# First update transformers to make sure we have latest version | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"]) | |
# Now try loading with explicit config class to avoid auto-detection issues | |
from transformers import LlamaConfig | |
# Load config first | |
config = LlamaConfig.from_pretrained( | |
hf_model_repo_id, | |
trust_remote_code=True | |
) | |
# Then load model with explicit config | |
model = AutoModelForCausalLM.from_pretrained( | |
hf_model_repo_id, | |
config=config, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
log.append(f"Loaded model vocab size: {model.config.vocab_size}") | |
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}") | |
except Exception as e: | |
error_msg = f"Error loading model from Hub: {e}" | |
log.append(error_msg) | |
# Try with a fallback method | |
try: | |
log.append("Attempting alternative loading method...") | |
# Try loading without auto detection | |
model = AutoModelForCausalLM.from_pretrained( | |
hf_model_repo_id, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16, | |
# Add these to help with the loading | |
revision="main", | |
low_cpu_mem_usage=True, | |
) | |
log.append("Alternative loading successful!") | |
log.append(f"Loaded model vocab size: {model.config.vocab_size}") | |
except Exception as e2: | |
log.append(f"Alternative loading also failed: {e2}") | |
return "\n".join(log) | |
# --- Load Tokenizer (prioritizing Llama 3.2 1B) --- | |
progress(0.3, desc="Loading tokenizer...") | |
# Set up token for authentication | |
token_param = {"token": hf_token} if hf_token and hf_token.strip() else {} | |
if token_param: | |
log.append("Using provided Hugging Face token for authentication") | |
else: | |
log.append("No token provided, using Space's default authentication") | |
# Try to load a compatible tokenizer | |
try: | |
# First try the actual Llama 3.2 1B tokenizer | |
tokenizer_repo = "meta-llama/Llama-3.2-1B" # The official 1B model | |
log.append(f"Attempting to load tokenizer from {tokenizer_repo}...") | |
tokenizer = AutoTokenizer.from_pretrained( | |
tokenizer_repo, | |
padding_side="right", | |
use_fast=True, | |
**token_param # Pass token if provided | |
) | |
log.append(f"Successfully loaded tokenizer from {tokenizer_repo}") | |
except Exception as e1: | |
log.append(f"Couldn't load {tokenizer_repo} tokenizer: {e1}") | |
# Try the model repo directly (in case it has a tokenizer) | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
hf_model_repo_id, # The RVQ model repo | |
padding_side="right", | |
use_fast=True, | |
**token_param # Pass token if provided | |
) | |
log.append(f"Loaded tokenizer from the model repo: {hf_model_repo_id}") | |
except Exception as e2: | |
log.append(f"Couldn't load model repo tokenizer: {e2}") | |
# Continue with our fallbacks (public models don't need token) | |
try: | |
# Try TinyLlama (public) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
padding_side="right", | |
use_fast=True | |
) | |
log.append("Loaded TinyLlama tokenizer as fallback") | |
except Exception as e3: | |
log.append(f"Couldn't load TinyLlama tokenizer: {e3}") | |
# Last resort - other public models | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
"microsoft/phi-2", # Public model | |
padding_side="right" | |
) | |
log.append("Loaded Phi-2 tokenizer as last resort") | |
except Exception as e4: | |
error_msg = f"Failed to load any compatible tokenizer after multiple attempts: {e4}" | |
log.append(error_msg) | |
return "\n".join(log) | |
# Set pad token if not already set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token is not None else "<pad>" | |
log.append("Set pad_token to eos_token or <pad>") | |
log.append(f"Tokenizer loaded with vocab size: {len(tokenizer)}") | |
log.append(f"Model vocab size: {model.config.vocab_size}") | |
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}") | |
# Prepare model for k-bit training | |
model = prepare_model_for_kbit_training(model) | |
# Define LoRA configuration - adjusted for 1B model | |
lora_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
r=8, # Smaller rank for 1B model (vs 16 for larger models) | |
lora_alpha=16, # Adjusted alpha (vs 32 for larger models) | |
lora_dropout=0.05, | |
bias="none", | |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] | |
) | |
# Apply LoRA to model | |
progress(0.4, desc="Applying LoRA to model...") | |
model_to_train = get_peft_model(model, lora_config) | |
log.append("LoRA applied to model") | |
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)") | |
model_to_train.print_trainable_parameters() | |
return model, tokenizer | |
def load_dataset(): | |
# --- Download the dataset repository files --- | |
try: | |
os.makedirs(local_download_path, exist_ok=True) | |
downloaded_repo_root = snapshot_download( | |
repo_id=hf_dataset_repo_id, | |
repo_type="dataset", | |
local_dir=local_download_path, | |
local_dir_use_symlinks=False | |
) | |
print(f"Dataset repository content downloaded to: {downloaded_repo_root}") | |
except Exception as e: | |
print(f"Error downloading dataset: {e}") | |
return None | |
# --- Load .pt files into a Hugging Face Dataset object --- | |
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs") | |
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt")) | |
if not all_pair_files: | |
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt")) | |
if not all_pair_files: | |
print("No RVQ pair files found!") | |
return None | |
print(f"Found {len(all_pair_files)} RVQ pair files.") | |
# Load data from .pt files into memory | |
all_data_pairs = [] | |
for file_path in tqdm(all_pair_files, desc="Loading pair files"): | |
try: | |
episode_pairs = torch.load(file_path, map_location='cpu') | |
all_data_pairs.extend(episode_pairs) | |
except Exception as e: | |
print(f"Warning: Could not load file {file_path}: {e}") | |
if not all_data_pairs: | |
return None | |
print(f"Loaded {len(all_data_pairs)} training pairs.") | |
# Convert to Hugging Face Dataset | |
chunk_size = 1000 | |
processed_data = {'input_ids': [], 'labels': []} | |
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"): | |
batch = all_data_pairs[i:i + chunk_size] | |
prepared_batch = prepare_for_dataset(batch) | |
processed_data['input_ids'].extend(prepared_batch['input_ids']) | |
processed_data['labels'].extend(prepared_batch['labels']) | |
hf_dataset = Dataset.from_dict(processed_data) | |
# Transform to get tensors back | |
hf_dataset.set_transform(lambda batch: { | |
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']], | |
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']] | |
}) | |
# Cleanup | |
del all_data_pairs | |
del processed_data | |
gc.collect() | |
return hf_dataset | |
# Memory cleaning function | |
def clean_memory(): | |
gc.collect() | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
with torch.cuda.device(f'cuda:{i}'): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_peak_memory_stats() | |
def train_model( | |
hf_username, | |
model_repo_name, | |
dataset_repo_name, | |
epochs=1, | |
batch_size=8, | |
grad_accum_steps=1, | |
learning_rate=2e-4, | |
hf_token=None, # New parameter for token | |
progress=gr.Progress() | |
): | |
progress(0, desc="Setting up environment...") | |
log = [] | |
# Install sentencepiece if it's not already installed | |
progress(0.02, desc="Installing required dependencies...") | |
try: | |
import sentencepiece | |
log.append("SentencePiece already installed") | |
except ImportError: | |
log.append("Installing SentencePiece...") | |
try: | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "sentencepiece"]) | |
log.append("SentencePiece installed successfully") | |
except Exception as e: | |
log.append(f"Error installing SentencePiece: {e}") | |
# Continue anyway, we'll try other tokenizer approaches if this fails | |
# Clean up any existing model files to save space | |
if os.path.exists("./model_files"): | |
try: | |
shutil.rmtree("./model_files") | |
except Exception as e: | |
log.append(f"Warning: Could not remove existing model files: {e}") | |
if os.path.exists("./downloaded_dataset_files"): | |
try: | |
shutil.rmtree("./downloaded_dataset_files") | |
except Exception as e: | |
log.append(f"Warning: Could not remove existing dataset files: {e}") | |
# Print GPU info - using imported torch, not a local variable | |
if torch.cuda.is_available(): | |
log.append(f"Available GPUs: {torch.cuda.device_count()}") | |
for i in range(torch.cuda.device_count()): | |
gpu_name = torch.cuda.get_device_name(i) | |
gpu_memory = torch.cuda.get_device_properties(i).total_memory / (1024**3) | |
log.append(f"GPU {i}: {gpu_name} with {gpu_memory:.2f} GB") | |
# Import required libraries | |
try: | |
from datasets import Dataset | |
from huggingface_hub import snapshot_download | |
# Don't import torch again, since it's already imported | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import BitsAndBytesConfig, TrainingArguments, Trainer | |
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training | |
log.append(f"Transformers version: {transformers.__version__}") | |
log.append(f"PyTorch version: {torch.__version__}") | |
except ImportError as e: | |
log.append(f"Error importing libraries: {e}") | |
return "\n".join(log) | |
# --- Configuration --- | |
progress(0.05, desc="Setting up configuration...") | |
hf_model_repo_id = f"{hf_username}/{model_repo_name}" | |
hf_dataset_repo_id = f"{hf_username}/{dataset_repo_name}" | |
log.append(f"Model repo: {hf_model_repo_id}") | |
log.append(f"Dataset repo: {hf_dataset_repo_id}") | |
# Check if running on multiple GPUs | |
n_gpus = torch.cuda.device_count() | |
log.append(f"Number of GPUs available: {n_gpus}") | |
# --- DeepSpeed Configuration --- | |
# Create DeepSpeed config file | |
progress(0.1, desc="Setting up DeepSpeed configuration...") | |
# Create a simpler config since we have plenty of memory on A100 | |
ds_config = { | |
"bf16": { | |
"enabled": "auto" | |
}, | |
"zero_optimization": { | |
"stage": 1, # Lower stage is fine for A100-80GB | |
"contiguous_gradients": True, | |
"overlap_comm": True | |
}, | |
"gradient_accumulation_steps": grad_accum_steps, | |
"gradient_clipping": 1.0, | |
"train_batch_size": batch_size * grad_accum_steps * max(1, n_gpus) | |
} | |
ds_config_path = "ds_config.json" | |
with open(ds_config_path, "w") as f: | |
json.dump(ds_config, f, indent=4) | |
log.append("DeepSpeed configuration created successfully") | |
# --- Download and Load Model --- | |
progress(0.15, desc="Downloading model...") | |
try: | |
# Download model files | |
local_model_path = "./model_files" | |
snapshot_download( | |
repo_id=hf_model_repo_id, | |
local_dir=local_model_path, | |
use_auth_token=False, | |
resume_download=True | |
) | |
log.append(f"Model files downloaded to {local_model_path}") | |
# Check and fix the model config if needed | |
config_path = os.path.join(local_model_path, "config.json") | |
if os.path.exists(config_path): | |
with open(config_path, 'r') as f: | |
config_data = json.load(f) | |
# Fix the rope_scaling configuration | |
if 'rope_scaling' in config_data: | |
if not isinstance(config_data['rope_scaling'], dict): | |
config_data['rope_scaling'] = {"type": "linear", "factor": 2.0} | |
elif 'rope_type' in config_data['rope_scaling']: | |
# Convert complex rope_scaling to the simple format expected | |
rope_factor = config_data['rope_scaling'].get('factor', 2.0) | |
config_data['rope_scaling'] = {"type": "linear", "factor": rope_factor} | |
# Write the updated config back | |
with open(config_path, 'w') as f: | |
json.dump(config_data, f, indent=2) | |
log.append("Updated model configuration for rope_scaling") | |
# Create a bnb configuration for loading the model in 4-bit | |
progress(0.25, desc="Loading model...") | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_use_double_quant=False | |
) | |
# Load the model with fixed configuration | |
model = AutoModelForCausalLM.from_pretrained( | |
local_model_path, | |
quantization_config=bnb_config, | |
device_map="auto", | |
use_cache=False, # Needed for gradient checkpointing | |
trust_remote_code=True, # Following reference code | |
torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, | |
) | |
# --- Load Tokenizer (prioritizing Llama 3.2 1B) --- | |
progress(0.3, desc="Loading tokenizer...") | |
# Set up token for authentication | |
token_param = {"token": hf_token} if hf_token and hf_token.strip() else {} | |
if token_param: | |
log.append("Using provided Hugging Face token for authentication") | |
else: | |
log.append("No token provided, using Space's default authentication") | |
# Try to load a compatible tokenizer | |
try: | |
# First try the actual Llama 3.2 1B tokenizer | |
tokenizer_repo = "meta-llama/Llama-3.2-1B" # The official 1B model | |
log.append(f"Attempting to load tokenizer from {tokenizer_repo}...") | |
tokenizer = AutoTokenizer.from_pretrained( | |
tokenizer_repo, | |
padding_side="right", | |
use_fast=True, | |
**token_param # Pass token if provided | |
) | |
log.append(f"Successfully loaded tokenizer from {tokenizer_repo}") | |
except Exception as e1: | |
log.append(f"Couldn't load {tokenizer_repo} tokenizer: {e1}") | |
# Try the model repo directly (in case it has a tokenizer) | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
hf_model_repo_id, # The RVQ model repo | |
padding_side="right", | |
use_fast=True, | |
**token_param # Pass token if provided | |
) | |
log.append(f"Loaded tokenizer from the model repo: {hf_model_repo_id}") | |
except Exception as e2: | |
log.append(f"Couldn't load model repo tokenizer: {e2}") | |
# Continue with our fallbacks (public models don't need token) | |
try: | |
# Try TinyLlama (public) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
padding_side="right", | |
use_fast=True | |
) | |
log.append("Loaded TinyLlama tokenizer as fallback") | |
except Exception as e3: | |
log.append(f"Couldn't load TinyLlama tokenizer: {e3}") | |
# Last resort - other public models | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
"microsoft/phi-2", # Public model | |
padding_side="right" | |
) | |
log.append("Loaded Phi-2 tokenizer as last resort") | |
except Exception as e4: | |
error_msg = f"Failed to load any compatible tokenizer after multiple attempts: {e4}" | |
log.append(error_msg) | |
return "\n".join(log) | |
# Set pad token if not already set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token is not None else "<pad>" | |
log.append("Set pad_token to eos_token or <pad>") | |
log.append(f"Tokenizer loaded with vocab size: {len(tokenizer)}") | |
log.append(f"Model vocab size: {model.config.vocab_size}") | |
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}") | |
# --- QLoRA Preparation --- | |
progress(0.35, desc="Preparing model for k-bit training...") | |
model = prepare_model_for_kbit_training(model) | |
log.append("Model prepared for k-bit training") | |
# Define LoRA configuration - adjusted for 1B model | |
lora_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
r=8, # Smaller rank for 1B model (vs 16 for larger models) | |
lora_alpha=16, # Adjusted alpha (vs 32 for larger models) | |
lora_dropout=0.05, | |
bias="none", | |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] | |
) | |
# Apply LoRA to model | |
progress(0.4, desc="Applying LoRA to model...") | |
model_to_train = get_peft_model(model, lora_config) | |
log.append("LoRA applied to model") | |
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)") | |
model_to_train.print_trainable_parameters() | |
# Cleanup to free up memory | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
except Exception as e: | |
error_msg = f"Error preparing model for training: {str(e)}" | |
log.append(error_msg) | |
return "\n".join(log) | |
# --- Download and Load Dataset --- | |
progress(0.45, desc="Downloading dataset...") | |
log.append(f"Downloading dataset from {hf_dataset_repo_id}...") | |
try: | |
# Download the dataset files | |
local_dataset_path = "./downloaded_dataset_files" | |
# Correctly specify repo_type as "dataset" | |
snapshot_download( | |
repo_id=hf_dataset_repo_id, | |
local_dir=local_dataset_path, | |
repo_type="dataset", # Important! Specifies this is a dataset repo | |
token=hf_token if hf_token and hf_token.strip() else None, # Use token for auth | |
resume_download=True | |
) | |
log.append(f"Dataset files downloaded to {local_dataset_path}") | |
# Check the structure of the downloaded files | |
log.append("Checking downloaded dataset structure...") | |
downloaded_files = glob.glob(f"{local_dataset_path}/**/*.pt", recursive=True) | |
log.append(f"Found {len(downloaded_files)} .pt files in the dataset directory") | |
# Look for the pairs directory (we know this exists from the log) | |
pairs_dir = os.path.join(local_dataset_path, "final_rvq_pairs") | |
log.append(f"Using pairs directory: {pairs_dir}") | |
pt_files = glob.glob(f"{pairs_dir}/*.pt") | |
log.append(f"Found {len(pt_files)} .pt files in pairs directory") | |
# Load the dataset from the files | |
progress(0.5, desc="Loading pairs from dataset files...") | |
log.append("Loading dataset pairs...") | |
try: | |
# Load a single file first to understand its structure | |
sample_file = pt_files[0] | |
sample_data = torch.load(sample_file) | |
log.append(f"Sample data type: {type(sample_data)}") | |
# Function to recursively explore the data structure | |
def explore_data(data, prefix=""): | |
if isinstance(data, (list, tuple)): | |
log.append(f"{prefix}List/Tuple with {len(data)} items") | |
if len(data) > 0: | |
explore_data(data[0], prefix + " [0]: ") | |
elif isinstance(data, dict): | |
log.append(f"{prefix}Dictionary with keys: {list(data.keys())}") | |
for key in list(data.keys())[:2]: # Look at first 2 keys | |
explore_data(data[key], prefix + f" ['{key}']: ") | |
elif isinstance(data, torch.Tensor): | |
log.append(f"{prefix}Tensor with shape {data.shape} and dtype {data.dtype}") | |
else: | |
log.append(f"{prefix}Other type: {type(data)}") | |
# Explore the sample data | |
explore_data(sample_data, "Sample data: ") | |
# Function to extract tensor data from complex structures | |
def extract_tensor_data(data): | |
if isinstance(data, torch.Tensor): | |
return data | |
elif isinstance(data, (list, tuple)) and len(data) > 0: | |
if all(isinstance(item, (int, float)) for item in data): | |
return torch.tensor(data) | |
# For lists of tensors/complex structures, use the first item | |
return extract_tensor_data(data[0]) | |
elif isinstance(data, dict): | |
# Try common keys for input data | |
for key in ['input_ids', 'prompt', 'source', 'inputs', 'data']: | |
if key in data: | |
return extract_tensor_data(data[key]) | |
# If none found, use the first key | |
if len(data) > 0: | |
return extract_tensor_data(next(iter(data.values()))) | |
return None | |
# Process all files | |
input_ids_list = [] | |
labels_list = [] | |
# Capture any errors for later analysis | |
file_errors = [] | |
for i, pt_file in enumerate(tqdm(pt_files, desc="Loading .pt files")): | |
try: | |
data = torch.load(pt_file) | |
if isinstance(data, (list, tuple)) and len(data) >= 2: | |
# Standard format: list/tuple with [input, label] | |
input_tensor = extract_tensor_data(data[0]) | |
label_tensor = extract_tensor_data(data[1]) | |
if input_tensor is not None and label_tensor is not None: | |
input_ids_list.append(input_tensor) | |
labels_list.append(label_tensor) | |
else: | |
file_errors.append(f"Could not extract tensors from {pt_file}") | |
else: | |
log.append(f"File {pt_file} has unexpected format. Skipping.") | |
file_errors.append(f"Unexpected format in {pt_file}: {type(data)}") | |
except Exception as e: | |
file_errors.append(f"Error processing file {pt_file}: {str(e)}") | |
# Log errors if any | |
if file_errors: | |
log.append(f"Encountered {len(file_errors)} errors during file processing:") | |
for i, error in enumerate(file_errors[:5]): # Log first 5 errors | |
log.append(f" Error {i+1}: {error}") | |
if len(file_errors) > 5: | |
log.append(f" ...and {len(file_errors) - 5} more errors") | |
log.append(f"Successfully processed {len(input_ids_list)} input/label pairs") | |
# Verify all tensors are valid | |
valid_pairs = [] | |
for i, (inputs, labels) in enumerate(zip(input_ids_list, labels_list)): | |
# Perform safety checks on tensors | |
if not isinstance(inputs, torch.Tensor) or not isinstance(labels, torch.Tensor): | |
log.append(f"Pair {i}: Invalid tensor types - skipping") | |
continue | |
# Ensure tensors contain integers | |
try: | |
inputs = inputs.long() | |
labels = labels.long() | |
# Convert to lists and add to valid pairs | |
valid_pairs.append((inputs.tolist(), labels.tolist())) | |
# Log some diagnostics for the first few pairs | |
if i < 3: | |
log.append(f"Pair {i}: Input shape: {inputs.shape}, Label shape: {labels.shape}") | |
except Exception as e: | |
log.append(f"Error converting tensors for pair {i}: {str(e)}") | |
# Create the dataset | |
log.append(f"Creating dataset from {len(valid_pairs)} valid pairs...") | |
processed_inputs = [pair[0] for pair in valid_pairs] | |
processed_labels = [pair[1] for pair in valid_pairs] | |
dataset = Dataset.from_dict({ | |
"input_ids": processed_inputs, | |
"labels": processed_labels | |
}) | |
# Split into training and validation | |
train_test_split = dataset.train_test_split(test_size=0.05) | |
train_dataset = train_test_split["train"] | |
val_dataset = train_test_split["test"] | |
log.append(f"Created dataset with {len(train_dataset)} training examples and {len(val_dataset)} validation examples") | |
except Exception as e: | |
import traceback | |
error_msg = f"Error processing dataset: {str(e)}\n{traceback.format_exc()}" | |
log.append(error_msg) | |
return "\n".join(log) | |
except Exception as e: | |
error_msg = f"Error loading dataset: {str(e)}" | |
log.append(error_msg) | |
return "\n".join(log) | |
# --- Training Arguments --- | |
progress(0.75, desc="Setting up training arguments...") | |
output_dir = f"./results_{model_repo_name}" | |
os.makedirs(output_dir, exist_ok=True) | |
# For 1B model on A100, we can increase batch size and reduce gradient accumulation | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
num_train_epochs=float(epochs), | |
per_device_train_batch_size=8, # Larger batch size for 1B model | |
gradient_accumulation_steps=1, # Reduced for 1B model | |
learning_rate=learning_rate, | |
weight_decay=0.01, | |
logging_dir=f"{output_dir}/logs", | |
logging_steps=10, | |
save_steps=50, | |
save_total_limit=3, | |
remove_unused_columns=False, | |
push_to_hub=False, | |
disable_tqdm=False, | |
warmup_ratio=0.03, | |
lr_scheduler_type="cosine", | |
report_to="tensorboard", | |
bf16=True if torch.cuda.is_bf16_supported() else False, | |
fp16=False, # Using BF16 instead | |
gradient_checkpointing=True, # Still useful for efficiency | |
gradient_checkpointing_kwargs={'use_reentrant': False}, | |
ddp_find_unused_parameters=False, | |
deepspeed=ds_config_path if n_gpus > 1 else None, # Only use DeepSpeed for multi-GPU | |
) | |
# --- Initialize Trainer --- | |
progress(0.8, desc="Initializing trainer...") | |
trainer = Trainer( | |
model=model_to_train, | |
args=training_args, | |
train_dataset=train_dataset, | |
data_collator=data_collator, | |
) | |
log.append("Trainer initialized for training.") | |
# --- Start Training --- | |
# Clear cache before starting | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
try: | |
progress(0.85, desc="Starting training...") | |
log.append("Starting training...") | |
train_result = trainer.train() | |
progress(0.95, desc="Saving model...") | |
# Save final model (adapter weights) and training state | |
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint") | |
log.append(f"Saving final model checkpoint to {final_save_path}...") | |
trainer.save_model(final_save_path) | |
trainer.save_state() | |
# Log metrics | |
metrics = train_result.metrics | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
for key, value in metrics.items(): | |
log.append(f"{key}: {value}") | |
except Exception as e: | |
error_msg = f"An error occurred during training: {e}" | |
log.append(error_msg) | |
return "\n".join(log) | |
progress(1.0, desc="Training complete!") | |
log.append("Training process complete.") | |
return "\n".join(log) | |
# Define the Gradio interface | |
def create_interface(): | |
with gr.Blocks(title="Llama 3.2 1B RVQ Fine-tuning") as demo: | |
gr.Markdown("# Llama 3.2 1B RVQ LoRA Fine-tuning") | |
gr.Markdown("Fine-tune a Llama 3.2 1B model with RVQ token embeddings using LoRA") | |
with gr.Row(): | |
with gr.Column(): | |
hf_username = gr.Textbox(label="HuggingFace Username", value="Twelve2five") | |
model_repo = gr.Textbox(label="Model Repository Name", value="llama-3.2-1b-rvq") | |
dataset_repo = gr.Textbox(label="Dataset Repository Name", value="podcast-dialogue-rvq-pairs-3items") | |
hf_token = gr.Textbox( | |
label="Hugging Face Token (Optional)", | |
placeholder="Enter your HF token to access gated models", | |
type="password" | |
) | |
with gr.Column(): | |
epochs = gr.Number(label="Number of Epochs", value=3, minimum=1, maximum=10) | |
batch_size = gr.Number(label="Batch Size per Device", value=8, minimum=1, maximum=16) | |
grad_accum = gr.Number(label="Gradient Accumulation Steps", value=1, minimum=1, maximum=16) | |
lr = gr.Number(label="Learning Rate", value=2e-4) | |
start_btn = gr.Button("Start Training") | |
output = gr.Textbox(label="Training Log", lines=20) | |
start_btn.click( | |
fn=train_model, | |
inputs=[hf_username, model_repo, dataset_repo, epochs, batch_size, grad_accum, lr, hf_token], | |
outputs=output | |
) | |
return demo | |
# Create and launch the interface | |
demo = create_interface() | |
if __name__ == "__main__": | |
demo.launch() |