Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from neuralprophet import NeuralProphet | |
import warnings | |
import torch.optim as optim | |
from torch.optim.lr_scheduler import OneCycleLR | |
warnings.filterwarnings("ignore", category=UserWarning) | |
url = "VN Index Historical Data.csv" | |
df = pd.read_csv(url) | |
df = df[["Date", "Price"]] | |
df = df.rename(columns={"Date": "ds", "Price": "y"}) | |
df.fillna(method='ffill', inplace=True) | |
df.dropna(inplace=True) | |
class CustomNeuralProphet(NeuralProphet): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.optimizer = None | |
m = CustomNeuralProphet( | |
n_forecasts=30, | |
n_lags=12, | |
changepoints_range=1, | |
num_hidden_layers=3, | |
yearly_seasonality=True, | |
n_changepoints=150, | |
trend_reg_threshold=False, | |
d_hidden=3, | |
global_normalization=True, | |
seasonality_reg=1, | |
unknown_data_normalization=True, | |
seasonality_mode="multiplicative", | |
drop_missing=True, | |
learning_rate=0.03, | |
) | |
# Set the custom LR scheduler | |
m.fit(df, freq='D') # Fit the model first before accessing the optimizer | |
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03) # Example optimizer, adjust as needed | |
lr_scheduler = OneCycleLR( | |
m.optimizer, | |
max_lr=0.1, | |
total_steps=100, | |
pct_start=0.3, | |
anneal_strategy='cos', | |
) # Example LR scheduler, adjust as needed | |
m.trainer.lr_schedulers = [lr_scheduler] # Set the LR scheduler to the trainer | |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True) | |
forecast = m.predict(future) | |
def predict_vn_index(option=None): | |
fig = m.plot(forecast) | |
path = "forecast_plot.png" | |
fig.savefig(path) | |
disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách." | |
return path, disclaimer | |
if __name__ == "__main__": | |
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex") | |
image_output = gr.outputs.Image(type="file", label="Forecast Plot") | |
disclaimer_output = gr.outputs.Textbox(label="Disclaimer") | |
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới") | |
interface.launch() | |