File size: 2,406 Bytes
fc9d5c1
 
602bdb4
fc9d5c1
9bd34af
 
fc9d5c1
 
 
 
 
 
 
 
 
 
9eca625
21cc39d
0ad6252
 
 
 
21cc39d
9bd34af
 
 
22ba16b
602bdb4
fc9d5c1
 
602bdb4
 
fc9d5c1
 
49c8dfd
602bdb4
fc9d5c1
 
 
 
 
59a1ae2
fc9d5c1
 
9bd34af
 
 
9eca625
9bd34af
 
fc9d5c1
 
 
 
 
 
49c8dfd
 
 
602bdb4
49c8dfd
fc9d5c1
 
 
 
21cc39d
49c8dfd
 
3faa322
 
59a1ae2
602bdb4
fc9d5c1
 
 
0ad6252
9bd34af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import pandas as pd
from neuralprophet import NeuralProphet
import warnings
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR

warnings.filterwarnings("ignore", category=UserWarning)

url = "VN Index Historical Data.csv"
df = pd.read_csv(url)
df = df[["Date", "Price"]]
df = df.rename(columns={"Date": "ds", "Price": "y"})
df.fillna(method='ffill', inplace=True)
df.dropna(inplace=True)


class CustomNeuralProphet(NeuralProphet):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.optimizer = None

    def lr_scheduler_step(self, epoch, batch_idx, optimizer):
        # Custom logic for LR scheduler step
        for lr_scheduler in optimizer.param_groups[0]['lr_scheduler']:
            lr_scheduler.step()

m = CustomNeuralProphet(
    n_forecasts=30,
    n_lags=12,
    changepoints_range=1,
    num_hidden_layers=3,
    yearly_seasonality=True,
    n_changepoints=150,
    trend_reg_threshold=False,
    d_hidden=3,
    global_normalization=True,
    seasonality_reg=1,
    unknown_data_normalization=True,
    seasonality_mode="multiplicative",
    drop_missing=True,
    learning_rate=0.03,
)

# Set the custom LR scheduler
m.fit(df, freq='D')  # Fit the model first before accessing the optimizer
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03)  # Example optimizer, adjust as needed

lr_scheduler = LambdaLR(m.optimizer, lambda epoch: 0.95 ** epoch)  # Example LR scheduler, adjust as needed
m.optimizer.param_groups[0]['lr_scheduler'] = [lr_scheduler]

future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
forecast = m.predict(future)


def predict_vn_index(option=None):
    fig = m.plot(forecast)
    path = "forecast_plot.png"
    fig.savefig(path)
    disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách."
    return path, disclaimer


if __name__ == "__main__":
    dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
    image_output = gr.outputs.Image(type="file", label="Forecast Plot")
    disclaimer_output = gr.outputs.Textbox(label="Disclaimer")
    interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới")
    interface.launch()