File size: 2,044 Bytes
fc9d5c1
 
a807e9f
fc9d5c1
 
a807e9f
fc9d5c1
 
 
 
 
 
 
 
 
d8600b1
fc9d5c1
 
602bdb4
 
a807e9f
 
fc9d5c1
 
a807e9f
602bdb4
fc9d5c1
 
 
 
 
a807e9f
fc9d5c1
 
a807e9f
fc9d5c1
 
 
 
 
a807e9f
 
 
 
 
 
 
 
602bdb4
a807e9f
 
fc9d5c1
 
 
 
a807e9f
 
 
 
 
 
c1d5b13
a807e9f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import pandas as pd
from neuralprophet import NeuralProphet, set_log_level
import warnings

set_log_level("ERROR")
warnings.filterwarnings("ignore", category=UserWarning)

url = "VN Index Historical Data.csv"
df = pd.read_csv(url)
df = df[["Date", "Price"]]
df = df.rename(columns={"Date": "ds", "Price": "y"})
df.fillna(method='ffill', inplace=True)
df.dropna(inplace=True)

m = NeuralProphet(
    n_forecasts=30,
    n_lags=12,
    changepoints_range=1,
    num_hidden_layers=3,
    daily_seasonality=False,
    weekly_seasonality=True,
    yearly_seasonality=True,
    n_changepoints=150,
    trend_reg_threshold=False,  # Disable trend regularization threshold
    d_hidden=3,
    global_normalization=True,
    seasonality_reg=1,
    unknown_data_normalization=True,
    seasonality_mode="multiplicative",
    drop_missing=True,
    learning_rate=0.03
)

m.fit(df, freq='D')

future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
forecast = m.predict(future)

def predict_vn_index(option=None):
    fig1 = m.plot(forecast)
    fig1_path = "forecast_plot1.png"
    fig1.savefig(fig1_path)

    # Add code to generate the second image (fig2)
    fig2 = m.plot_latest_forecast(forecast)  # Replace this line with code to generate the second image
    fig2_path = "forecast_plot2.png"
    fig2.savefig(fig2_path)
    disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách."

    return fig1_path, fig2_path, disclaimer


if __name__ == "__main__":
    dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
    outputs = [
        gr.outputs.Image(type="filepath", label="First Image"),
        gr.outputs.Image(type="filepath", label="Second Image"),
        gr.outputs.Textbox(label="Disclaimer")
    ]
    interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=outputs, title="Dự báo VN Index 30 ngày tới")
    interface.launch()