Spaces:
Sleeping
Sleeping
Commit
·
a807e9f
1
Parent(s):
1d54feb
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
from neuralprophet import NeuralProphet
|
| 4 |
import warnings
|
| 5 |
-
import torch.optim as optim
|
| 6 |
-
from torch.optim.lr_scheduler import OneCycleLR
|
| 7 |
|
|
|
|
| 8 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 9 |
|
| 10 |
url = "VN Index Historical Data.csv"
|
|
@@ -14,58 +13,55 @@ df = df.rename(columns={"Date": "ds", "Price": "y"})
|
|
| 14 |
df.fillna(method='ffill', inplace=True)
|
| 15 |
df.dropna(inplace=True)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
class CustomNeuralProphet(NeuralProphet):
|
| 19 |
-
def __init__(self, **kwargs):
|
| 20 |
-
super().__init__(**kwargs)
|
| 21 |
-
self.optimizer = None
|
| 22 |
-
|
| 23 |
-
m = CustomNeuralProphet(
|
| 24 |
n_forecasts=30,
|
| 25 |
n_lags=12,
|
| 26 |
changepoints_range=1,
|
| 27 |
num_hidden_layers=3,
|
|
|
|
|
|
|
| 28 |
yearly_seasonality=True,
|
| 29 |
n_changepoints=150,
|
| 30 |
-
trend_reg_threshold=False,
|
| 31 |
d_hidden=3,
|
| 32 |
global_normalization=True,
|
| 33 |
seasonality_reg=1,
|
| 34 |
unknown_data_normalization=True,
|
| 35 |
seasonality_mode="multiplicative",
|
| 36 |
drop_missing=True,
|
| 37 |
-
learning_rate=0.03
|
| 38 |
)
|
| 39 |
|
| 40 |
-
|
| 41 |
-
m.fit(df, freq='D') # Fit the model first before accessing the optimizer
|
| 42 |
-
m.optimizer = optim.Adam(m.model.parameters(), lr=0.03) # Example optimizer, adjust as needed
|
| 43 |
-
|
| 44 |
-
lr_scheduler = OneCycleLR(
|
| 45 |
-
m.optimizer,
|
| 46 |
-
max_lr=0.1,
|
| 47 |
-
total_steps=100,
|
| 48 |
-
pct_start=0.3,
|
| 49 |
-
anneal_strategy='cos',
|
| 50 |
-
) # Example LR scheduler, adjust as needed
|
| 51 |
-
|
| 52 |
-
m.trainer.lr_schedulers = [lr_scheduler] # Set the LR scheduler to the trainer
|
| 53 |
|
| 54 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
| 55 |
forecast = m.predict(future)
|
| 56 |
|
| 57 |
-
|
| 58 |
def predict_vn_index(option=None):
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách."
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
| 67 |
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
from neuralprophet import NeuralProphet, set_log_level
|
| 4 |
import warnings
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
set_log_level("ERROR")
|
| 7 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 8 |
|
| 9 |
url = "VN Index Historical Data.csv"
|
|
|
|
| 13 |
df.fillna(method='ffill', inplace=True)
|
| 14 |
df.dropna(inplace=True)
|
| 15 |
|
| 16 |
+
m = NeuralProphet(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
n_forecasts=30,
|
| 18 |
n_lags=12,
|
| 19 |
changepoints_range=1,
|
| 20 |
num_hidden_layers=3,
|
| 21 |
+
daily_seasonality=False,
|
| 22 |
+
weekly_seasonality=True,
|
| 23 |
yearly_seasonality=True,
|
| 24 |
n_changepoints=150,
|
| 25 |
+
trend_reg_threshold=False, # Disable trend regularization threshold
|
| 26 |
d_hidden=3,
|
| 27 |
global_normalization=True,
|
| 28 |
seasonality_reg=1,
|
| 29 |
unknown_data_normalization=True,
|
| 30 |
seasonality_mode="multiplicative",
|
| 31 |
drop_missing=True,
|
| 32 |
+
learning_rate=0.03
|
| 33 |
)
|
| 34 |
|
| 35 |
+
m.fit(df, freq='D')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
|
| 38 |
forecast = m.predict(future)
|
| 39 |
|
|
|
|
| 40 |
def predict_vn_index(option=None):
|
| 41 |
+
fig1 = m.plot(forecast)
|
| 42 |
+
fig1_path = "forecast_plot1.png"
|
| 43 |
+
fig1.savefig(fig1_path)
|
| 44 |
+
|
| 45 |
+
# Add code to generate the second image (fig2)
|
| 46 |
+
fig2 = m.plot_latest_forecast(forecast) # Replace this line with code to generate the second image
|
| 47 |
+
fig2_path = "forecast_plot2.png"
|
| 48 |
+
fig2.savefig(fig2_path)
|
| 49 |
disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách."
|
| 50 |
+
|
| 51 |
+
return fig1_path, fig2_path, disclaimer
|
| 52 |
|
| 53 |
|
| 54 |
if __name__ == "__main__":
|
| 55 |
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
|
| 56 |
+
outputs = [
|
| 57 |
+
gr.outputs.Image(type="filepath", label="First Image"),
|
| 58 |
+
gr.outputs.Image(type="filepath", label="Second Image"),
|
| 59 |
+
gr.outputs.Textbox(label="Disclaimer")
|
| 60 |
+
]
|
| 61 |
+
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=outputs, title="Dự báo VN Index 30 ngày tới")
|
| 62 |
+
interface.launch(share=True)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|