File size: 2,803 Bytes
3afe7b3
a222a4b
 
c7c3e26
 
 
825827f
 
3afe7b3
632a181
3afe7b3
 
55e33aa
 
3afe7b3
 
 
b789c6c
3afe7b3
 
 
 
 
 
 
 
 
 
 
 
 
55e33aa
 
 
 
 
 
 
825827f
55e33aa
 
825827f
55e33aa
825827f
 
3afe7b3
 
b789c6c
 
825827f
3afe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b789c6c
3afe7b3
 
 
 
 
 
 
b789c6c
 
3afe7b3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
torch.backends.quantized.engine = 'fbgemm'  # ensure we use fbgemm

print("PyTorch version:", torch.__version__)
print("Supported quantized engines:", torch.backends.quantized.supported_engines)

import torch.nn as nn
import torch.quantization  # <--- Use the older namespace for default_qconfig
from transformers import AutoTokenizer
from model import TransformerModel
import gradio as gr

from torch.ao.quantization.qconfig import float_qparams_weight_only_qconfig

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")

def load_quantized_model(checkpoint_path):
    model = TransformerModel(
        vocab_size=49152,
        hidden_size=576,
        num_hidden_layers=30,
        num_attention_heads=9,
        intermediate_size=1536,
        num_key_value_heads=3,
        max_position_embeddings=2048,
        rms_norm_eps=1e-5,
        hidden_act="silu",
        tie_word_embeddings=True,
    )
    
    # This qconfig is typically for your other layers
    default_qconfig = torch.quantization.get_default_qconfig("fbgemm")
    model.qconfig = default_qconfig

    # For embeddings, force the specialized config:
    model.embed_tokens.qconfig = float_qparams_weight_only_qconfig
    model.embed_positions.qconfig = float_qparams_weight_only_qconfig

    # Then prepare, calibrate, and convert
    model = torch.quantization.prepare(model, inplace=False)

    # Calibration pass here...
    model = torch.quantization.convert(model, inplace=False)

    return model


# Load the quantized model
model = load_quantized_model("quantized_model.pt")

# Function to generate text
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    
    with torch.no_grad():
        output_ids = model.generate(
            input_ids,
            max_length=max_length,
            temperature=temperature,
            top_k=top_k,
            do_sample=True,
        )
    
    generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return generated_text

# Gradio Interface
interface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
        gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, label="Top-k Sampling"),
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="Text Generation with Quantized SMOL-LM2",
    description="Generate text using a quantized version of the SMOL-LM2 model.",
)

# Launch the app
interface.launch()