Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ from transformers import AutoTokenizer
|
|
5 |
from model import TransformerModel
|
6 |
import gradio as gr
|
7 |
|
|
|
|
|
8 |
# Load the tokenizer
|
9 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
10 |
|
@@ -22,32 +24,20 @@ def load_quantized_model(checkpoint_path):
|
|
22 |
tie_word_embeddings=True,
|
23 |
)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Static quant config for the rest of the model
|
34 |
-
model.qconfig = torch.quantization.get_default_qconfig("fbgemm") # CPU
|
35 |
-
model = torch.quantization.prepare(model, inplace=False)
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
# e.g. with torch.no_grad():
|
40 |
-
# for input_ids in some_calibration_loader:
|
41 |
-
# outputs = model(input_ids)
|
42 |
-
#
|
43 |
|
|
|
44 |
model = torch.quantization.convert(model, inplace=False)
|
45 |
-
|
46 |
-
# Load checkpoint
|
47 |
-
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
48 |
-
model.load_state_dict(checkpoint)
|
49 |
|
50 |
-
model.eval()
|
51 |
return model
|
52 |
|
53 |
|
|
|
5 |
from model import TransformerModel
|
6 |
import gradio as gr
|
7 |
|
8 |
+
from torch.ao.quantization.qconfig import float_qparams_weight_only_qconfig
|
9 |
+
|
10 |
# Load the tokenizer
|
11 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
12 |
|
|
|
24 |
tie_word_embeddings=True,
|
25 |
)
|
26 |
|
27 |
+
# This qconfig is typically for your other layers
|
28 |
+
default_qconfig = torch.quantization.get_default_qconfig("fbgemm")
|
29 |
+
model.qconfig = default_qconfig
|
30 |
+
|
31 |
+
# For embeddings, force the specialized config:
|
32 |
+
model.embed_tokens.qconfig = float_qparams_weight_only_qconfig
|
33 |
+
model.embed_positions.qconfig = float_qparams_weight_only_qconfig
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Then prepare, calibrate, and convert
|
36 |
+
model = torch.quantization.prepare(model, inplace=False)
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Calibration pass here...
|
39 |
model = torch.quantization.convert(model, inplace=False)
|
|
|
|
|
|
|
|
|
40 |
|
|
|
41 |
return model
|
42 |
|
43 |
|