Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -6,9 +6,8 @@ import gradio as gr
|
|
| 6 |
# Load the tokenizer
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Initialize the model (replace with your model's configuration)
|
| 12 |
model = TransformerModel(
|
| 13 |
vocab_size=49152,
|
| 14 |
hidden_size=576,
|
|
@@ -20,24 +19,35 @@ def load_model(checkpoint_path):
|
|
| 20 |
rms_norm_eps=1e-5,
|
| 21 |
hidden_act="silu",
|
| 22 |
tie_word_embeddings=True,
|
| 23 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 24 |
)
|
| 25 |
|
| 26 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 28 |
model.load_state_dict(checkpoint["model_state_dict"])
|
|
|
|
| 29 |
model.eval()
|
| 30 |
return model
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Function to generate text
|
| 36 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
| 37 |
-
# Encode the prompt
|
| 38 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 39 |
|
| 40 |
-
# Generate text
|
| 41 |
with torch.no_grad():
|
| 42 |
output_ids = model.generate(
|
| 43 |
input_ids,
|
|
@@ -47,17 +57,12 @@ def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
|
| 47 |
do_sample=True,
|
| 48 |
)
|
| 49 |
|
| 50 |
-
# Decode the generated text
|
| 51 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 52 |
return generated_text
|
| 53 |
|
| 54 |
# Gradio Interface
|
| 55 |
-
def gradio_generate_text(prompt, max_length, temperature, top_k):
|
| 56 |
-
return generate_text(prompt, max_length, temperature, top_k)
|
| 57 |
-
|
| 58 |
-
# Create the Gradio app
|
| 59 |
interface = gr.Interface(
|
| 60 |
-
fn=
|
| 61 |
inputs=[
|
| 62 |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
| 63 |
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
|
|
@@ -65,8 +70,8 @@ interface = gr.Interface(
|
|
| 65 |
gr.Slider(minimum=1, maximum=100, value=50, label="Top-k Sampling"),
|
| 66 |
],
|
| 67 |
outputs=gr.Textbox(label="Generated Text"),
|
| 68 |
-
title="Text Generation with SMOL-LM2",
|
| 69 |
-
description="Generate text using the SMOL-LM2 model.",
|
| 70 |
)
|
| 71 |
|
| 72 |
# Launch the app
|
|
|
|
| 6 |
# Load the tokenizer
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
| 8 |
|
| 9 |
+
def load_quantized_model(checkpoint_path):
|
| 10 |
+
# Define the model architecture
|
|
|
|
| 11 |
model = TransformerModel(
|
| 12 |
vocab_size=49152,
|
| 13 |
hidden_size=576,
|
|
|
|
| 19 |
rms_norm_eps=1e-5,
|
| 20 |
hidden_act="silu",
|
| 21 |
tie_word_embeddings=True,
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
+
# Apply dynamic quantization to the embedding layer
|
| 25 |
+
model.embed_tokens = torch.quantization.quantize_dynamic(
|
| 26 |
+
model.embed_tokens, {torch.nn.Embedding}, dtype=torch.qint8
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Apply static quantization to the rest of the model
|
| 30 |
+
model.qconfig = torch.quantization.default_qconfig
|
| 31 |
+
model = torch.quantization.prepare(model, inplace=False)
|
| 32 |
+
model = torch.quantization.convert(model, inplace=False)
|
| 33 |
+
|
| 34 |
+
# Load the quantized checkpoint
|
| 35 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 36 |
model.load_state_dict(checkpoint["model_state_dict"])
|
| 37 |
+
|
| 38 |
model.eval()
|
| 39 |
return model
|
| 40 |
|
| 41 |
+
|
| 42 |
+
import gradio as gr
|
| 43 |
+
|
| 44 |
+
# Load the quantized model
|
| 45 |
+
model = load_quantized_model("checkpoint_quantized.pt")
|
| 46 |
|
| 47 |
# Function to generate text
|
| 48 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
|
|
|
| 49 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 50 |
|
|
|
|
| 51 |
with torch.no_grad():
|
| 52 |
output_ids = model.generate(
|
| 53 |
input_ids,
|
|
|
|
| 57 |
do_sample=True,
|
| 58 |
)
|
| 59 |
|
|
|
|
| 60 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 61 |
return generated_text
|
| 62 |
|
| 63 |
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
interface = gr.Interface(
|
| 65 |
+
fn=generate_text,
|
| 66 |
inputs=[
|
| 67 |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
| 68 |
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
|
|
|
|
| 70 |
gr.Slider(minimum=1, maximum=100, value=50, label="Top-k Sampling"),
|
| 71 |
],
|
| 72 |
outputs=gr.Textbox(label="Generated Text"),
|
| 73 |
+
title="Text Generation with Quantized SMOL-LM2",
|
| 74 |
+
description="Generate text using a quantized version of the SMOL-LM2 model.",
|
| 75 |
)
|
| 76 |
|
| 77 |
# Launch the app
|
model.py
CHANGED
|
@@ -160,9 +160,6 @@ class TransformerBlock(nn.Module):
|
|
| 160 |
return x
|
| 161 |
|
| 162 |
class TransformerModel(nn.Module):
|
| 163 |
-
"""
|
| 164 |
-
The full transformer model with multiple layers.
|
| 165 |
-
"""
|
| 166 |
def __init__(
|
| 167 |
self,
|
| 168 |
vocab_size: int,
|
|
@@ -175,7 +172,6 @@ class TransformerModel(nn.Module):
|
|
| 175 |
rms_norm_eps: float,
|
| 176 |
hidden_act: str = "silu",
|
| 177 |
tie_word_embeddings: bool = True,
|
| 178 |
-
pad_token_id: Optional[int] = None,
|
| 179 |
):
|
| 180 |
super().__init__()
|
| 181 |
self.vocab_size = vocab_size
|
|
@@ -183,7 +179,7 @@ class TransformerModel(nn.Module):
|
|
| 183 |
self.num_hidden_layers = num_hidden_layers
|
| 184 |
self.max_position_embeddings = max_position_embeddings
|
| 185 |
|
| 186 |
-
# Embedding layers
|
| 187 |
self.embed_tokens = nn.Embedding(vocab_size, hidden_size)
|
| 188 |
self.embed_positions = nn.Embedding(max_position_embeddings, hidden_size)
|
| 189 |
|
|
|
|
| 160 |
return x
|
| 161 |
|
| 162 |
class TransformerModel(nn.Module):
|
|
|
|
|
|
|
|
|
|
| 163 |
def __init__(
|
| 164 |
self,
|
| 165 |
vocab_size: int,
|
|
|
|
| 172 |
rms_norm_eps: float,
|
| 173 |
hidden_act: str = "silu",
|
| 174 |
tie_word_embeddings: bool = True,
|
|
|
|
| 175 |
):
|
| 176 |
super().__init__()
|
| 177 |
self.vocab_size = vocab_size
|
|
|
|
| 179 |
self.num_hidden_layers = num_hidden_layers
|
| 180 |
self.max_position_embeddings = max_position_embeddings
|
| 181 |
|
| 182 |
+
# Embedding layers (skip quantization for these)
|
| 183 |
self.embed_tokens = nn.Embedding(vocab_size, hidden_size)
|
| 184 |
self.embed_positions = nn.Embedding(max_position_embeddings, hidden_size)
|
| 185 |
|