Spaces:
Sleeping
Sleeping
File size: 7,005 Bytes
95d187a bfe7166 95d187a bfe7166 60624d8 95d187a bfe7166 c17825d bfe7166 c17825d bfe7166 c17825d bfe7166 95d187a bfe7166 95d187a bfe7166 c17825d bfe7166 60624d8 95d187a 60624d8 95d187a 60624d8 95d187a 60624d8 95d187a 60624d8 95d187a 60624d8 95d187a 5f4b8bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
import torch
import importlib.util
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import os
# Download and import model components from HF Hub
model_repo = "TimurHromek/HROM-V1"
# 1. Import trainer module components
trainer_file = hf_hub_download(repo_id=model_repo, filename="HROM-V1.5_Trainer.py")
spec = importlib.util.spec_from_file_location("HROM_Trainer", trainer_file)
trainer_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(trainer_module)
HROM = trainer_module.HROM
CONFIG = trainer_module.CONFIG
SafetyManager = trainer_module.SafetyManager
# 2. Load tokenizer
tokenizer_file = hf_hub_download(repo_id=model_repo, filename="tokenizer/hrom_tokenizer.json")
tokenizer = Tokenizer.from_file(tokenizer_file)
# 3. Load model checkpoint
checkpoint_file = hf_hub_download(repo_id=model_repo, filename="HROM-V1.5_Trained-Model/HROM-V1.5.pt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model():
model = HROM().to(device)
checkpoint = torch.load(checkpoint_file, map_location=device)
model.load_state_dict(checkpoint['model'])
model.eval()
return model
model = load_model()
safety = SafetyManager(model, tokenizer)
max_response_length = 200
def generate_response(model, tokenizer, input_ids, safety_manager, max_length=200):
device = next(model.parameters()).device
generated_ids = input_ids.copy()
for _ in range(max_length):
input_tensor = torch.tensor([generated_ids], device=device)
with torch.no_grad():
logits = model(input_tensor)
next_token = logits.argmax(-1)[:, -1].item()
if next_token == tokenizer.token_to_id("</s>"):
break
current_text = tokenizer.decode(generated_ids + [next_token])
if not safety_manager.content_filter(current_text):
break
generated_ids.append(next_token)
return generated_ids[len(input_ids):]
def process_message(user_input, chat_history, token_history):
# Process user input
user_turn = f"<user> {user_input} </s>"
user_tokens = tokenizer.encode(user_turn).ids
token_history.extend(user_tokens)
# Prepare input sequence
input_sequence = [tokenizer.token_to_id("<s>")] + token_history
# Truncate if needed
max_input_len = CONFIG["max_seq_len"] - max_response_length
if len(input_sequence) > max_input_len:
input_sequence = input_sequence[-max_input_len:]
token_history = input_sequence[1:]
# Generate response
response_ids = generate_response(model, tokenizer, input_sequence, safety, max_response_length)
# Process assistant response
assistant_text = "I couldn't generate a proper response."
if response_ids:
if response_ids[0] == tokenizer.token_to_id("<assistant>"):
try:
end_idx = response_ids.index(tokenizer.token_to_id("</s>"))
assistant_text = tokenizer.decode(response_ids[1:end_idx])
token_history.extend(response_ids[:end_idx+1])
except ValueError:
assistant_text = tokenizer.decode(response_ids[1:])
token_history.extend(response_ids)
else:
assistant_text = tokenizer.decode(response_ids)
token_history.extend(response_ids)
chat_history.append((user_input, assistant_text))
return chat_history, token_history
def clear_history():
return [], []
# Custom CSS for styling
custom_css = """
body {
background: linear-gradient(to bottom, #1a1a1a, #2a2a2a);
font-family: 'Roboto', sans-serif;
color: white;
margin: 0;
padding: 0;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
.gr-chatbot {
font-size: 16px;
border: none;
background-color: #1e1e1e;
border-radius: 8px;
padding: 10px;
}
.gr-chatbot .bubble.user {
background-color: #2d2d2d !important;
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
.gr-chatbot .bubble.assistant {
background-color: #3d3d3d !important;
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
.gr-button {
background-color: #4CAF50;
color: white;
border: none;
padding: 12px 24px;
font-size: 16px;
border-radius: 4px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #45a049;
}
.gr-text-input input {
background-color: #2d2d2d;
color: white;
border: 1px solid #4CAF50;
border-radius: 4px;
padding: 10px;
font-size: 16px;
}
.header {
display: flex;
align-items: center;
justify-content: center;
padding: 20px 0;
text-align: center;
}
.header img {
width: 60px;
height: 60px;
margin-right: 15px;
}
.footer {
text-align: center;
padding: 20px;
font-size: 14px;
color: #ccc;
margin-top: 30px;
}
.title {
font-size: 28px;
font-weight: bold;
color: #ffffff;
margin: 0;
}
.subtitle {
font-size: 16px;
color: #cccccc;
margin: 5px 0 0 0;
}
"""
with gr.Blocks(
theme="dark",
css=custom_css
) as demo:
with gr.Column(elem_classes=["container"]):
# Header
with gr.Row(elem_classes=["header"]):
gr.Image(
value="https://huggingface.co/TimurHromek/HROM-V1/resolve/main/hrom_icon.png",
interactive=False,
width=60,
height=60,
show_label=False
)
with gr.Column():
gr.Markdown("<div class='title'>HROM-V1 Chatbot</div>")
gr.Markdown("<div class='subtitle'>Powered by Gradio and Hugging Face</div>")
# Chatbot
chatbot = gr.Chatbot(
height=500,
avatar_images=[
("https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/test_image.png", "user"),
("https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/favicon.png", "assistant")
],
bubble_full_width=False
)
# Input
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2
)
# Buttons
clear_btn = gr.Button("Clear Chat History")
# State
token_state = gr.State([])
# Event handlers
msg.submit(
process_message,
[msg, chatbot, token_state],
[chatbot, token_state],
queue=False
).then(
lambda: "", None, msg
)
clear_btn.click(
clear_history,
outputs=[chatbot, token_state],
queue=False
)
# Footer
gr.Markdown("<div class='footer'>© 2025 HROM-V1 | Model by Timur Hromek | Assisted by Elapt1c</div>")
if __name__ == "__main__":
demo.launch() |