Spaces:
Running
Running
Reverted to working build of chat interface.
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
import importlib.util
|
4 |
from tokenizers import Tokenizer
|
5 |
from huggingface_hub import hf_hub_download
|
|
|
6 |
|
7 |
# Download and import model components from HF Hub
|
8 |
model_repo = "TimurHromek/HROM-V1"
|
@@ -35,53 +36,39 @@ model = load_model()
|
|
35 |
safety = SafetyManager(model, tokenizer)
|
36 |
max_response_length = 200
|
37 |
|
38 |
-
def generate_response(model, tokenizer, input_ids, safety_manager, max_length=200
|
39 |
device = next(model.parameters()).device
|
40 |
generated_ids = input_ids.copy()
|
41 |
for _ in range(max_length):
|
42 |
input_tensor = torch.tensor([generated_ids], device=device)
|
43 |
with torch.no_grad():
|
44 |
logits = model(input_tensor)
|
45 |
-
|
46 |
-
# Get last token logits and apply temperature
|
47 |
-
next_token_logits = logits[0, -1, :]
|
48 |
-
if temperature != 1.0:
|
49 |
-
next_token_logits = next_token_logits / temperature
|
50 |
-
probs = torch.softmax(next_token_logits, dim=-1)
|
51 |
-
|
52 |
-
# Sample next token
|
53 |
-
next_token = torch.multinomial(probs, num_samples=1).item()
|
54 |
-
|
55 |
-
# Stop if end token is generated
|
56 |
if next_token == tokenizer.token_to_id("</s>"):
|
57 |
break
|
58 |
-
|
59 |
-
# Safety check
|
60 |
current_text = tokenizer.decode(generated_ids + [next_token])
|
61 |
if not safety_manager.content_filter(current_text):
|
62 |
break
|
63 |
-
|
64 |
generated_ids.append(next_token)
|
65 |
return generated_ids[len(input_ids):]
|
66 |
|
67 |
-
def process_message(user_input, chat_history, token_history
|
68 |
# Process user input
|
69 |
user_turn = f"<user> {user_input} </s>"
|
70 |
user_tokens = tokenizer.encode(user_turn).ids
|
71 |
token_history.extend(user_tokens)
|
72 |
|
73 |
-
# Prepare input sequence
|
74 |
input_sequence = [tokenizer.token_to_id("<s>")] + token_history
|
75 |
|
76 |
-
# Truncate
|
77 |
-
max_input_len =
|
78 |
if len(input_sequence) > max_input_len:
|
79 |
input_sequence = input_sequence[-max_input_len:]
|
80 |
token_history = input_sequence[1:]
|
81 |
|
82 |
-
# Generate response
|
83 |
-
response_ids = generate_response(model, tokenizer, input_sequence, safety,
|
84 |
-
max_response_length, temperature)
|
85 |
|
86 |
# Process assistant response
|
87 |
assistant_text = "I couldn't generate a proper response."
|
@@ -104,125 +91,22 @@ def process_message(user_input, chat_history, token_history, temperature, max_co
|
|
104 |
def clear_history():
|
105 |
return [], []
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
--border: #e0e0e0;
|
112 |
-
--button-bg: #f0f0f0;
|
113 |
-
--button-hover: #e0e0e0;
|
114 |
-
--chatbot-bg: #f8f8f8;
|
115 |
-
}
|
116 |
-
|
117 |
-
.dark {
|
118 |
-
--background: #1a1a1a;
|
119 |
-
--text: white;
|
120 |
-
--border: #404040;
|
121 |
-
--button-bg: #404040;
|
122 |
-
--button-hover: #505050;
|
123 |
-
--chatbot-bg: #262626;
|
124 |
-
}
|
125 |
-
|
126 |
-
body {
|
127 |
-
background: var(--background) !important;
|
128 |
-
color: var(--text) !important;
|
129 |
-
transition: all 0.3s ease;
|
130 |
-
}
|
131 |
-
|
132 |
-
.gr-box {
|
133 |
-
border-color: var(--border) !important;
|
134 |
-
background: var(--background) !important;
|
135 |
-
}
|
136 |
-
|
137 |
-
.gr-button {
|
138 |
-
background: var(--button-bg) !important;
|
139 |
-
color: var(--text) !important;
|
140 |
-
border-color: var(--border) !important;
|
141 |
-
}
|
142 |
-
|
143 |
-
.gr-button:hover {
|
144 |
-
background: var(--button-hover) !important;
|
145 |
-
}
|
146 |
-
|
147 |
-
#chatbot {
|
148 |
-
background: var(--chatbot-bg) !important;
|
149 |
-
border-color: var(--border) !important;
|
150 |
-
min-height: 500px;
|
151 |
-
}
|
152 |
-
|
153 |
-
.gr-textbox input {
|
154 |
-
color: var(--text) !important;
|
155 |
-
}
|
156 |
-
|
157 |
-
.dark .gr-markdown {
|
158 |
-
color: var(--text) !important;
|
159 |
-
}
|
160 |
-
|
161 |
-
.settings-panel {
|
162 |
-
border-left: 1px solid var(--border) !important;
|
163 |
-
padding-left: 20px !important;
|
164 |
-
}
|
165 |
-
"""
|
166 |
-
|
167 |
-
with gr.Blocks(css=css, title="HROM-V1.5 Chatbot") as demo:
|
168 |
-
current_theme = gr.State("light")
|
169 |
-
|
170 |
-
with gr.Row():
|
171 |
-
with gr.Column(scale=3):
|
172 |
-
gr.Markdown("# HROM-V1.5 Chatbot")
|
173 |
-
chatbot = gr.Chatbot(height=500, elem_id="chatbot")
|
174 |
-
msg = gr.Textbox(label="Your Message",
|
175 |
-
placeholder="Type your message...",
|
176 |
-
show_label=False,
|
177 |
-
container=False)
|
178 |
-
|
179 |
-
with gr.Column(scale=1, min_width=300, elem_classes="settings-panel"):
|
180 |
-
with gr.Accordion("⚙️ Settings", open=False):
|
181 |
-
with gr.Row():
|
182 |
-
theme_btn = gr.Button("🌙 Dark Theme", variant="secondary")
|
183 |
-
with gr.Row():
|
184 |
-
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1,
|
185 |
-
label="Temperature (higher = more creative)")
|
186 |
-
with gr.Row():
|
187 |
-
max_context = gr.Slider(100, CONFIG["max_seq_len"] - max_response_length,
|
188 |
-
value=CONFIG["max_seq_len"] - max_response_length, step=1,
|
189 |
-
label="Context Window Size")
|
190 |
-
with gr.Row():
|
191 |
-
clear_btn = gr.Button("🧹 Clear History", variant="secondary")
|
192 |
-
|
193 |
token_state = gr.State([])
|
194 |
-
theme_css = gr.HTML("<style></style>")
|
195 |
-
|
196 |
-
def toggle_theme(theme):
|
197 |
-
new_theme = "dark" if theme == "light" else "light"
|
198 |
-
btn_text = "🌞 Light Theme" if new_theme == "light" else "🌙 Dark Theme"
|
199 |
-
css = """
|
200 |
-
<style>
|
201 |
-
body { background: %s !important; color: %s !important; }
|
202 |
-
.dark-mode { display: %s !important; }
|
203 |
-
</style>
|
204 |
-
""" % (
|
205 |
-
"var(--background)",
|
206 |
-
"var(--text)",
|
207 |
-
"block" if new_theme == "dark" else "none"
|
208 |
-
)
|
209 |
-
return new_theme, btn_text, css
|
210 |
-
|
211 |
-
theme_btn.click(
|
212 |
-
toggle_theme,
|
213 |
-
current_theme,
|
214 |
-
[current_theme, theme_btn, theme_css]
|
215 |
-
)
|
216 |
|
217 |
msg.submit(
|
218 |
process_message,
|
219 |
-
[msg, chatbot, token_state
|
220 |
[chatbot, token_state],
|
221 |
queue=False
|
222 |
).then(
|
223 |
lambda: "", None, msg
|
224 |
)
|
225 |
|
|
|
226 |
clear_btn.click(
|
227 |
clear_history,
|
228 |
outputs=[chatbot, token_state],
|
|
|
3 |
import importlib.util
|
4 |
from tokenizers import Tokenizer
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
import os
|
7 |
|
8 |
# Download and import model components from HF Hub
|
9 |
model_repo = "TimurHromek/HROM-V1"
|
|
|
36 |
safety = SafetyManager(model, tokenizer)
|
37 |
max_response_length = 200
|
38 |
|
39 |
+
def generate_response(model, tokenizer, input_ids, safety_manager, max_length=200):
|
40 |
device = next(model.parameters()).device
|
41 |
generated_ids = input_ids.copy()
|
42 |
for _ in range(max_length):
|
43 |
input_tensor = torch.tensor([generated_ids], device=device)
|
44 |
with torch.no_grad():
|
45 |
logits = model(input_tensor)
|
46 |
+
next_token = logits.argmax(-1)[:, -1].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
if next_token == tokenizer.token_to_id("</s>"):
|
48 |
break
|
|
|
|
|
49 |
current_text = tokenizer.decode(generated_ids + [next_token])
|
50 |
if not safety_manager.content_filter(current_text):
|
51 |
break
|
|
|
52 |
generated_ids.append(next_token)
|
53 |
return generated_ids[len(input_ids):]
|
54 |
|
55 |
+
def process_message(user_input, chat_history, token_history):
|
56 |
# Process user input
|
57 |
user_turn = f"<user> {user_input} </s>"
|
58 |
user_tokens = tokenizer.encode(user_turn).ids
|
59 |
token_history.extend(user_tokens)
|
60 |
|
61 |
+
# Prepare input sequence
|
62 |
input_sequence = [tokenizer.token_to_id("<s>")] + token_history
|
63 |
|
64 |
+
# Truncate if needed
|
65 |
+
max_input_len = CONFIG["max_seq_len"] - max_response_length
|
66 |
if len(input_sequence) > max_input_len:
|
67 |
input_sequence = input_sequence[-max_input_len:]
|
68 |
token_history = input_sequence[1:]
|
69 |
|
70 |
+
# Generate response
|
71 |
+
response_ids = generate_response(model, tokenizer, input_sequence, safety, max_response_length)
|
|
|
72 |
|
73 |
# Process assistant response
|
74 |
assistant_text = "I couldn't generate a proper response."
|
|
|
91 |
def clear_history():
|
92 |
return [], []
|
93 |
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown("# HROM-V1 Chatbot")
|
96 |
+
chatbot = gr.Chatbot(height=500)
|
97 |
+
msg = gr.Textbox(label="Your Message")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
token_state = gr.State([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
msg.submit(
|
101 |
process_message,
|
102 |
+
[msg, chatbot, token_state],
|
103 |
[chatbot, token_state],
|
104 |
queue=False
|
105 |
).then(
|
106 |
lambda: "", None, msg
|
107 |
)
|
108 |
|
109 |
+
clear_btn = gr.Button("Clear Chat History")
|
110 |
clear_btn.click(
|
111 |
clear_history,
|
112 |
outputs=[chatbot, token_state],
|