Spaces:
Running
Running
Commit
·
95d187a
1
Parent(s):
dd6c81d
Uploaded model code and more.
Browse files- HROM_Trainer.py +360 -0
- LICENSE +201 -0
- app.py +104 -0
- tokenizer/hrom_tokenizer.json +0 -0
HROM_Trainer.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from datasets import load_dataset
|
5 |
+
from tokenizers import Tokenizer, models, trainers, pre_tokenizers, processors, decoders
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
from datetime import datetime
|
10 |
+
from contextlib import nullcontext
|
11 |
+
|
12 |
+
# Configuration
|
13 |
+
CONFIG = {
|
14 |
+
"dim": 512,
|
15 |
+
"n_layers": 6,
|
16 |
+
"n_heads": 8,
|
17 |
+
"ff_dim": 2048,
|
18 |
+
"dropout": 0.1,
|
19 |
+
"max_seq_len": 1024,
|
20 |
+
"batch_size": 32,
|
21 |
+
"checkpoint_interval": 1000,
|
22 |
+
"debug_interval": 500,
|
23 |
+
"dataset": "daily_dialog",
|
24 |
+
"vocab_size": 32000,
|
25 |
+
"tokenizer_train_samples": 100000,
|
26 |
+
"learning_rate": 3e-4,
|
27 |
+
"max_turns": 6,
|
28 |
+
"max_checkpoints": 5,
|
29 |
+
"num_epochs": 50 # Increased number of epochs for longer training
|
30 |
+
}
|
31 |
+
|
32 |
+
class RotaryEmbedding(nn.Module):
|
33 |
+
def __init__(self, dim):
|
34 |
+
super().__init__()
|
35 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
36 |
+
self.register_buffer("inv_freq", inv_freq)
|
37 |
+
|
38 |
+
def forward(self, seq_len):
|
39 |
+
t = torch.arange(seq_len, device=self.inv_freq.device).type_as(self.inv_freq)
|
40 |
+
freqs = torch.einsum("i, j -> i j", t, self.inv_freq)
|
41 |
+
return torch.cat((freqs, freqs), dim=-1)
|
42 |
+
|
43 |
+
def rotate_half(x):
|
44 |
+
x1, x2 = x.chunk(2, dim=-1)
|
45 |
+
return torch.cat((-x2, x1), dim=-1)
|
46 |
+
|
47 |
+
def apply_rotary_pos_emb(pos, t):
|
48 |
+
pos = pos.unsqueeze(0).unsqueeze(1)
|
49 |
+
return (t * pos.cos()) + (rotate_half(t) * pos.sin())
|
50 |
+
|
51 |
+
class SwiGLU(nn.Module):
|
52 |
+
def forward(self, x):
|
53 |
+
x, gate = x.chunk(2, dim=-1)
|
54 |
+
return x * torch.sigmoid(gate)
|
55 |
+
|
56 |
+
class HROMAttention(nn.Module):
|
57 |
+
def __init__(self):
|
58 |
+
super().__init__()
|
59 |
+
self.dim = CONFIG["dim"]
|
60 |
+
self.n_heads = CONFIG["n_heads"]
|
61 |
+
self.head_dim = self.dim // self.n_heads
|
62 |
+
self.qkv = nn.Linear(self.dim, 3 * self.dim)
|
63 |
+
self.proj = nn.Linear(self.dim, self.dim)
|
64 |
+
self.rotary = RotaryEmbedding(self.head_dim)
|
65 |
+
self.dropout = nn.Dropout(CONFIG["dropout"])
|
66 |
+
|
67 |
+
def forward(self, x, mask=None):
|
68 |
+
B, T, _ = x.shape
|
69 |
+
qkv = self.qkv(x).reshape(B, T, 3, self.n_heads, self.head_dim)
|
70 |
+
q, k, v = qkv.unbind(2)
|
71 |
+
q = q.transpose(1, 2)
|
72 |
+
k = k.transpose(1, 2)
|
73 |
+
v = v.transpose(1, 2)
|
74 |
+
pos = self.rotary(T)
|
75 |
+
q = apply_rotary_pos_emb(pos, q)
|
76 |
+
k = apply_rotary_pos_emb(pos, k)
|
77 |
+
attn = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
|
78 |
+
if mask is not None:
|
79 |
+
mask = mask.unsqueeze(1)
|
80 |
+
attn = attn + mask
|
81 |
+
attn = torch.softmax(attn, dim=-1)
|
82 |
+
attn = self.dropout(attn)
|
83 |
+
out = attn @ v
|
84 |
+
out = out.transpose(1, 2).reshape(B, T, self.dim)
|
85 |
+
return self.proj(out)
|
86 |
+
|
87 |
+
class HROMBlock(nn.Module):
|
88 |
+
def __init__(self):
|
89 |
+
super().__init__()
|
90 |
+
self.attn = HROMAttention()
|
91 |
+
self.ff = nn.Sequential(
|
92 |
+
nn.Linear(CONFIG["dim"], 2 * CONFIG["ff_dim"]),
|
93 |
+
SwiGLU(),
|
94 |
+
nn.Linear(CONFIG["ff_dim"], CONFIG["dim"])
|
95 |
+
)
|
96 |
+
self.norm1 = nn.LayerNorm(CONFIG["dim"])
|
97 |
+
self.norm2 = nn.LayerNorm(CONFIG["dim"])
|
98 |
+
self.dropout = nn.Dropout(CONFIG["dropout"])
|
99 |
+
|
100 |
+
def forward(self, x, mask=None):
|
101 |
+
x = x + self.dropout(self.attn(self.norm1(x), mask))
|
102 |
+
x = x + self.dropout(self.ff(self.norm2(x)))
|
103 |
+
return x
|
104 |
+
|
105 |
+
class HROM(nn.Module):
|
106 |
+
def __init__(self):
|
107 |
+
super().__init__()
|
108 |
+
self.embed = nn.Embedding(CONFIG["vocab_size"], CONFIG["dim"])
|
109 |
+
self.blocks = nn.ModuleList([HROMBlock() for _ in range(CONFIG["n_layers"])])
|
110 |
+
self.norm = nn.LayerNorm(CONFIG["dim"])
|
111 |
+
self.head = nn.Linear(CONFIG["dim"], CONFIG["vocab_size"])
|
112 |
+
self.apply(self._init_weights)
|
113 |
+
|
114 |
+
def _init_weights(self, module):
|
115 |
+
if isinstance(module, nn.Linear):
|
116 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
117 |
+
if module.bias is not None:
|
118 |
+
torch.nn.init.zeros_(module.bias)
|
119 |
+
|
120 |
+
def forward(self, x, attention_mask=None):
|
121 |
+
x = self.embed(x)
|
122 |
+
if attention_mask is not None:
|
123 |
+
B, T = attention_mask.shape
|
124 |
+
causal_mask = torch.triu(torch.ones(T, T) * float('-inf'), diagonal=1)
|
125 |
+
causal_mask = causal_mask.to(x.device)
|
126 |
+
pad_mask = attention_mask.unsqueeze(1).unsqueeze(2).to(dtype=torch.float32)
|
127 |
+
pad_mask = (1.0 - pad_mask) * torch.finfo(torch.float32).min
|
128 |
+
mask = causal_mask + pad_mask.squeeze(1)
|
129 |
+
else:
|
130 |
+
B, T = x.shape[:2]
|
131 |
+
mask = torch.triu(torch.ones(T, T) * float('-inf'), diagonal=1)
|
132 |
+
mask = mask.to(x.device)
|
133 |
+
mask = mask.unsqueeze(0).expand(B, -1, -1)
|
134 |
+
for block in self.blocks:
|
135 |
+
x = block(x, mask)
|
136 |
+
return self.head(self.norm(x))
|
137 |
+
|
138 |
+
class TokenizerTrainer:
|
139 |
+
def __init__(self):
|
140 |
+
self.tokenizer = Tokenizer(models.BPE())
|
141 |
+
self.tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
|
142 |
+
self.tokenizer.decoder = decoders.ByteLevel()
|
143 |
+
self.special_tokens = ["<pad>", "<s>", "</s>", "<unk>", "<user>", "<assistant>"]
|
144 |
+
|
145 |
+
def train(self, dataset_name):
|
146 |
+
dataset = load_dataset(dataset_name, split=f"train[:{CONFIG['tokenizer_train_samples']}]")
|
147 |
+
text_samples = []
|
148 |
+
for entry in dataset:
|
149 |
+
if "dialog" in entry:
|
150 |
+
for i, utterance in enumerate(entry["dialog"][:CONFIG["max_turns"]]):
|
151 |
+
role = "<user>" if i % 2 == 0 else "<assistant>"
|
152 |
+
text_samples.append(f"{role} {utterance}")
|
153 |
+
else:
|
154 |
+
text_samples.append(self._clean_text(entry.get("text", "")))
|
155 |
+
trainer = trainers.BpeTrainer(
|
156 |
+
vocab_size=CONFIG["vocab_size"],
|
157 |
+
special_tokens=self.special_tokens,
|
158 |
+
min_frequency=2,
|
159 |
+
show_progress=True
|
160 |
+
)
|
161 |
+
self.tokenizer.train_from_iterator(text_samples, trainer=trainer, length=len(text_samples))
|
162 |
+
self.tokenizer.post_processor = processors.TemplateProcessing(
|
163 |
+
single="$A </s>",
|
164 |
+
pair="$A $B </s>",
|
165 |
+
special_tokens=[("</s>", self.tokenizer.token_to_id("</s>"))],
|
166 |
+
)
|
167 |
+
os.makedirs("tokenizer", exist_ok=True)
|
168 |
+
self.tokenizer.save("tokenizer/hrom_tokenizer.json")
|
169 |
+
|
170 |
+
def _clean_text(self, text):
|
171 |
+
text = re.sub(r'[^\w\s.,!?\'\-:;<>]', '', text)
|
172 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
173 |
+
return text
|
174 |
+
|
175 |
+
class ChatDataset(Dataset):
|
176 |
+
def __init__(self, tokenizer):
|
177 |
+
full_dataset = load_dataset(CONFIG["dataset"], split="train")
|
178 |
+
num_samples = min(len(full_dataset), CONFIG["tokenizer_train_samples"])
|
179 |
+
self.dataset = full_dataset.shuffle(seed=42).select(range(num_samples))
|
180 |
+
self.tokenizer = tokenizer
|
181 |
+
self.max_length = CONFIG["max_seq_len"]
|
182 |
+
self.turn_sep = self.tokenizer.token_to_id("</s>")
|
183 |
+
|
184 |
+
def __len__(self):
|
185 |
+
return len(self.dataset)
|
186 |
+
|
187 |
+
def __getitem__(self, idx):
|
188 |
+
entry = self.dataset[idx]
|
189 |
+
formatted = []
|
190 |
+
if "dialog" in entry:
|
191 |
+
dialog = entry["dialog"][:CONFIG["max_turns"]]
|
192 |
+
for i, utterance in enumerate(dialog):
|
193 |
+
role_token = "<user>" if i % 2 == 0 else "<assistant>"
|
194 |
+
formatted.extend([
|
195 |
+
self.tokenizer.token_to_id(role_token),
|
196 |
+
*self.tokenizer.encode(utterance).ids,
|
197 |
+
self.turn_sep
|
198 |
+
])
|
199 |
+
else:
|
200 |
+
text = entry.get("text", "")
|
201 |
+
formatted.extend([
|
202 |
+
self.tokenizer.token_to_id("<user>"),
|
203 |
+
*self.tokenizer.encode(text).ids,
|
204 |
+
self.turn_sep
|
205 |
+
])
|
206 |
+
formatted = formatted[:self.max_length-2]
|
207 |
+
formatted = [self.tokenizer.token_to_id("<s>"), *formatted, self.tokenizer.token_to_id("</s>")]
|
208 |
+
return {
|
209 |
+
"input_ids": formatted[:-1],
|
210 |
+
"labels": formatted[1:]
|
211 |
+
}
|
212 |
+
|
213 |
+
@staticmethod
|
214 |
+
def collate_fn(batch):
|
215 |
+
max_len = max(len(item["input_ids"]) for item in batch)
|
216 |
+
pad_id = Tokenizer.from_file("tokenizer/hrom_tokenizer.json").token_to_id("<pad>")
|
217 |
+
inputs, labels, masks = [], [], []
|
218 |
+
for item in batch:
|
219 |
+
pad_len = max_len - len(item["input_ids"])
|
220 |
+
inputs.append(item["input_ids"] + [pad_id] * pad_len)
|
221 |
+
labels.append(item["labels"] + [pad_id] * pad_len)
|
222 |
+
masks.append([1] * len(item["input_ids"]) + [0] * pad_len)
|
223 |
+
return {
|
224 |
+
"input_ids": torch.tensor(inputs),
|
225 |
+
"labels": torch.tensor(labels),
|
226 |
+
"attention_mask": torch.tensor(masks)
|
227 |
+
}
|
228 |
+
|
229 |
+
class HROMTrainer:
|
230 |
+
def __init__(self, model, tokenizer):
|
231 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
232 |
+
self.model = model.to(self.device)
|
233 |
+
if self.device.type == "cuda":
|
234 |
+
self.scaler = torch.cuda.amp.GradScaler()
|
235 |
+
else:
|
236 |
+
self.scaler = None
|
237 |
+
self.optimizer = torch.optim.AdamW(
|
238 |
+
self.model.parameters(),
|
239 |
+
lr=CONFIG["learning_rate"],
|
240 |
+
fused=True if self.device.type == "cuda" else False
|
241 |
+
)
|
242 |
+
self.tokenizer = tokenizer
|
243 |
+
|
244 |
+
def train_step(self, batch):
|
245 |
+
self.optimizer.zero_grad()
|
246 |
+
autocast = torch.cuda.amp.autocast if self.device.type == "cuda" else nullcontext
|
247 |
+
with autocast():
|
248 |
+
outputs = self.model(
|
249 |
+
batch["input_ids"].to(self.device),
|
250 |
+
attention_mask=batch["attention_mask"].to(self.device)
|
251 |
+
)
|
252 |
+
loss = nn.CrossEntropyLoss(ignore_index=self.tokenizer.token_to_id("<pad>"))(
|
253 |
+
outputs.view(-1, CONFIG["vocab_size"]),
|
254 |
+
batch["labels"].view(-1).to(self.device)
|
255 |
+
)
|
256 |
+
if self.scaler is not None:
|
257 |
+
self.scaler.scale(loss).backward()
|
258 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
259 |
+
self.scaler.step(self.optimizer)
|
260 |
+
self.scaler.update()
|
261 |
+
else:
|
262 |
+
loss.backward()
|
263 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
264 |
+
self.optimizer.step()
|
265 |
+
return loss.item()
|
266 |
+
|
267 |
+
class SafetyManager:
|
268 |
+
def __init__(self, model, tokenizer):
|
269 |
+
self.model = model
|
270 |
+
self.tokenizer = tokenizer
|
271 |
+
self.bad_words = ["hate", "kill", "harm"]
|
272 |
+
self.bad_word_ids = [tokenizer.encode(w).ids for w in self.bad_words]
|
273 |
+
|
274 |
+
def content_filter(self, text):
|
275 |
+
tokens = self.tokenizer.encode(text).ids
|
276 |
+
for bad_ids in self.bad_word_ids:
|
277 |
+
if any(tokens[i:i+len(bad_ids)] == bad_ids for i in range(len(tokens))):
|
278 |
+
return False
|
279 |
+
return True
|
280 |
+
|
281 |
+
def generate_safely(self, prompt, max_length=50):
|
282 |
+
input_ids = self.tokenizer.encode(prompt).ids
|
283 |
+
device = next(self.model.parameters()).device
|
284 |
+
for _ in range(max_length):
|
285 |
+
with torch.no_grad():
|
286 |
+
logits = self.model(torch.tensor([input_ids]).to(device))
|
287 |
+
next_token = logits.argmax(-1)[:, -1].item()
|
288 |
+
if next_token == self.tokenizer.token_to_id("</s>"):
|
289 |
+
break
|
290 |
+
generated = self.tokenizer.decode(input_ids + [next_token])
|
291 |
+
if not self.content_filter(generated):
|
292 |
+
break
|
293 |
+
input_ids.append(next_token)
|
294 |
+
return self.tokenizer.decode(input_ids)
|
295 |
+
|
296 |
+
def debug_generation(self, prompt="Hello!"):
|
297 |
+
print(f"\nSafety Check Generation:")
|
298 |
+
response = self.generate_safely(prompt)
|
299 |
+
print(f"Prompt: {prompt}\nResponse: {response}")
|
300 |
+
|
301 |
+
class CheckpointManager:
|
302 |
+
def __init__(self):
|
303 |
+
self.checkpoint_dir = "checkpoints"
|
304 |
+
os.makedirs(self.checkpoint_dir, exist_ok=True)
|
305 |
+
|
306 |
+
def save(self, model, optimizer, step):
|
307 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
308 |
+
path = f"{self.checkpoint_dir}/hrom_{timestamp}_step{step}.pt"
|
309 |
+
torch.save({
|
310 |
+
"model": model.state_dict(),
|
311 |
+
"optimizer": optimizer.state_dict(),
|
312 |
+
"step": step,
|
313 |
+
"config": CONFIG
|
314 |
+
}, path)
|
315 |
+
self._cleanup_old_checkpoints()
|
316 |
+
|
317 |
+
def _cleanup_old_checkpoints(self):
|
318 |
+
checkpoints = sorted(os.listdir(self.checkpoint_dir),
|
319 |
+
key=lambda x: os.path.getmtime(os.path.join(self.checkpoint_dir, x)))
|
320 |
+
while len(checkpoints) > CONFIG["max_checkpoints"]:
|
321 |
+
os.remove(os.path.join(self.checkpoint_dir, checkpoints[0]))
|
322 |
+
checkpoints = checkpoints[1:]
|
323 |
+
|
324 |
+
def train():
|
325 |
+
checkpoint_manager = CheckpointManager()
|
326 |
+
if not os.path.exists("tokenizer/hrom_tokenizer.json"):
|
327 |
+
print("Training tokenizer...")
|
328 |
+
tokenizer_trainer = TokenizerTrainer()
|
329 |
+
tokenizer_trainer.train(CONFIG["dataset"])
|
330 |
+
|
331 |
+
tokenizer = Tokenizer.from_file("tokenizer/hrom_tokenizer.json")
|
332 |
+
model = HROM()
|
333 |
+
print("Downloading and caching the dataset...")
|
334 |
+
_ = load_dataset(CONFIG["dataset"], split="train", download_mode="reuse_cache_if_exists")
|
335 |
+
|
336 |
+
dataset = ChatDataset(tokenizer)
|
337 |
+
dataloader = DataLoader(
|
338 |
+
dataset,
|
339 |
+
batch_size=CONFIG["batch_size"],
|
340 |
+
collate_fn=ChatDataset.collate_fn
|
341 |
+
)
|
342 |
+
|
343 |
+
trainer_obj = HROMTrainer(model, tokenizer)
|
344 |
+
safety = SafetyManager(model, tokenizer)
|
345 |
+
|
346 |
+
step = 0
|
347 |
+
model.train()
|
348 |
+
for epoch in range(CONFIG["num_epochs"]):
|
349 |
+
for batch in dataloader:
|
350 |
+
loss = trainer_obj.train_step(batch)
|
351 |
+
if step % CONFIG["checkpoint_interval"] == 0:
|
352 |
+
checkpoint_manager.save(model, trainer_obj.optimizer, step)
|
353 |
+
safety.debug_generation()
|
354 |
+
if step % CONFIG["debug_interval"] == 0:
|
355 |
+
print(f"Step {step} | Loss: {loss:.4f}")
|
356 |
+
safety.debug_generation("What's the meaning of life?")
|
357 |
+
step += 1
|
358 |
+
|
359 |
+
if __name__ == "__main__":
|
360 |
+
train()
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2025 Timur Hromek
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from tokenizers import Tokenizer
|
4 |
+
import os
|
5 |
+
from HROM_Trainer import HROM, CONFIG, SafetyManager
|
6 |
+
|
7 |
+
def load_latest_checkpoint(model, device):
|
8 |
+
checkpoint_dir = "checkpoints"
|
9 |
+
checkpoints = [f for f in os.listdir(checkpoint_dir) if f.endswith(".pt")]
|
10 |
+
if not checkpoints:
|
11 |
+
raise FileNotFoundError("No checkpoints found.")
|
12 |
+
checkpoints = sorted(checkpoints, key=lambda x: os.path.getmtime(os.path.join(checkpoint_dir, x)), reverse=True)
|
13 |
+
latest_checkpoint = os.path.join(checkpoint_dir, checkpoints[0])
|
14 |
+
checkpoint = torch.load(latest_checkpoint, map_location=device)
|
15 |
+
model.load_state_dict(checkpoint['model'])
|
16 |
+
return model
|
17 |
+
|
18 |
+
def generate_response(model, tokenizer, input_ids, safety_manager, max_length=200):
|
19 |
+
device = next(model.parameters()).device
|
20 |
+
generated_ids = input_ids.copy()
|
21 |
+
for _ in range(max_length):
|
22 |
+
input_tensor = torch.tensor([generated_ids], device=device)
|
23 |
+
with torch.no_grad():
|
24 |
+
logits = model(input_tensor)
|
25 |
+
next_token = logits.argmax(-1)[:, -1].item()
|
26 |
+
if next_token == tokenizer.token_to_id("</s>"):
|
27 |
+
break
|
28 |
+
current_text = tokenizer.decode(generated_ids + [next_token])
|
29 |
+
if not safety_manager.content_filter(current_text):
|
30 |
+
break
|
31 |
+
generated_ids.append(next_token)
|
32 |
+
return generated_ids[len(input_ids):]
|
33 |
+
|
34 |
+
# Initialize components once
|
35 |
+
tokenizer = Tokenizer.from_file("tokenizer/hrom_tokenizer.json")
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
model = HROM().to(device)
|
38 |
+
model = load_latest_checkpoint(model, device)
|
39 |
+
model.eval()
|
40 |
+
safety = SafetyManager(model, tokenizer)
|
41 |
+
max_response_length = 200
|
42 |
+
|
43 |
+
def process_message(user_input, chat_history, token_history):
|
44 |
+
# Process user input
|
45 |
+
user_turn = f"<user> {user_input} </s>"
|
46 |
+
user_tokens = tokenizer.encode(user_turn).ids
|
47 |
+
token_history.extend(user_tokens)
|
48 |
+
|
49 |
+
# Prepare input sequence
|
50 |
+
input_sequence = [tokenizer.token_to_id("<s>")] + token_history
|
51 |
+
|
52 |
+
# Truncate if needed
|
53 |
+
max_input_len = CONFIG["max_seq_len"] - max_response_length
|
54 |
+
if len(input_sequence) > max_input_len:
|
55 |
+
input_sequence = input_sequence[-max_input_len:]
|
56 |
+
token_history = input_sequence[1:]
|
57 |
+
|
58 |
+
# Generate response
|
59 |
+
response_ids = generate_response(model, tokenizer, input_sequence, safety, max_response_length)
|
60 |
+
|
61 |
+
# Process assistant response
|
62 |
+
assistant_text = "I couldn't generate a proper response."
|
63 |
+
if response_ids:
|
64 |
+
if response_ids[0] == tokenizer.token_to_id("<assistant>"):
|
65 |
+
try:
|
66 |
+
end_idx = response_ids.index(tokenizer.token_to_id("</s>"))
|
67 |
+
assistant_text = tokenizer.decode(response_ids[1:end_idx])
|
68 |
+
token_history.extend(response_ids[:end_idx+1])
|
69 |
+
except ValueError:
|
70 |
+
assistant_text = tokenizer.decode(response_ids[1:])
|
71 |
+
token_history.extend(response_ids)
|
72 |
+
else:
|
73 |
+
assistant_text = tokenizer.decode(response_ids)
|
74 |
+
token_history.extend(response_ids)
|
75 |
+
|
76 |
+
chat_history.append((user_input, assistant_text))
|
77 |
+
return chat_history, token_history
|
78 |
+
|
79 |
+
def clear_history():
|
80 |
+
return [], []
|
81 |
+
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("# HROM Chatbot")
|
84 |
+
chatbot = gr.Chatbot(height=500)
|
85 |
+
msg = gr.Textbox(label="Your Message")
|
86 |
+
token_state = gr.State([])
|
87 |
+
|
88 |
+
msg.submit(
|
89 |
+
process_message,
|
90 |
+
[msg, chatbot, token_state],
|
91 |
+
[chatbot, token_state],
|
92 |
+
queue=False
|
93 |
+
).then(
|
94 |
+
lambda: "", None, msg
|
95 |
+
)
|
96 |
+
|
97 |
+
clear_btn = gr.Button("Clear Chat History")
|
98 |
+
clear_btn.click(
|
99 |
+
clear_history,
|
100 |
+
outputs=[chatbot, token_state],
|
101 |
+
queue=False
|
102 |
+
)
|
103 |
+
|
104 |
+
demo.launch()
|
tokenizer/hrom_tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|