Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch import nn | |
from core.common import gradient_checkpoint | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
print(f"XFORMERS_IS_AVAILBLE: {XFORMERS_IS_AVAILBLE}") | |
def get_group_norm_layer(in_channels): | |
if in_channels < 32: | |
if in_channels % 2 == 0: | |
num_groups = in_channels // 2 | |
else: | |
num_groups = in_channels | |
else: | |
num_groups = 32 | |
return torch.nn.GroupNorm( | |
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
if dim_out is None: | |
dim_out = dim | |
project_in = ( | |
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
if not glu | |
else GEGLU(dim, inner_dim) | |
) | |
self.net = nn.Sequential( | |
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class SpatialTemporalAttention(nn.Module): | |
"""Uses xformers to implement efficient epipolar masking for cross-attention between views.""" | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
if context_dim is None: | |
context_dim = query_dim | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
) | |
self.attention_op = None | |
def forward(self, x, context=None, enhance_multi_view_correspondence=False): | |
q = self.to_q(x) | |
if context is None: | |
context = x | |
k = self.to_k(context) | |
v = self.to_v(context) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
if enhance_multi_view_correspondence: | |
with torch.no_grad(): | |
normalized_x = torch.nn.functional.normalize(x.detach(), p=2, dim=-1) | |
cosine_sim_map = torch.bmm(normalized_x, normalized_x.transpose(-1, -2)) | |
attn_bias = torch.where(cosine_sim_map > 0.0, 0.0, -1e9).to( | |
dtype=q.dtype | |
) | |
attn_bias = rearrange( | |
attn_bias.unsqueeze(1).expand(-1, self.heads, -1, -1), | |
"b h d1 d2 -> (b h) d1 d2", | |
).detach() | |
else: | |
attn_bias = None | |
out = xformers.ops.memory_efficient_attention( | |
q, k, v, attn_bias=attn_bias, op=self.attention_op | |
) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
del q, k, v, attn_bias | |
return self.to_out(out) | |
class MultiViewSelfAttentionTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
gated_ff=True, | |
use_checkpoint=True, | |
full_spatial_temporal_attention=False, | |
enhance_multi_view_correspondence=False, | |
): | |
super().__init__() | |
attn_cls = SpatialTemporalAttention | |
# self.self_attention_only = self_attention_only | |
self.attn1 = attn_cls( | |
query_dim=dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
context_dim=None, | |
) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
if enhance_multi_view_correspondence: | |
# Zero initalization when MVCorr is enabled. | |
zero_module_fn = zero_module | |
else: | |
def zero_module_fn(x): | |
return x | |
self.attn2 = zero_module_fn( | |
attn_cls( | |
query_dim=dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
context_dim=None, | |
) | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.use_checkpoint = use_checkpoint | |
self.full_spatial_temporal_attention = full_spatial_temporal_attention | |
self.enhance_multi_view_correspondence = enhance_multi_view_correspondence | |
def forward(self, x, time_steps=None): | |
return gradient_checkpoint( | |
self.many_stream_forward, (x, time_steps), None, flag=self.use_checkpoint | |
) | |
def many_stream_forward(self, x, time_steps=None): | |
n, v, hw = x.shape[:3] | |
x = rearrange(x, "n v hw c -> n (v hw) c") | |
x = ( | |
self.attn1( | |
self.norm1(x), context=None, enhance_multi_view_correspondence=False | |
) | |
+ x | |
) | |
if not self.full_spatial_temporal_attention: | |
x = rearrange(x, "n (v hw) c -> n v hw c", v=v) | |
x = rearrange(x, "n v hw c -> (n v) hw c") | |
x = ( | |
self.attn2( | |
self.norm2(x), | |
context=None, | |
enhance_multi_view_correspondence=self.enhance_multi_view_correspondence | |
and hw <= 256, | |
) | |
+ x | |
) | |
x = self.ff(self.norm3(x)) + x | |
if self.full_spatial_temporal_attention: | |
x = rearrange(x, "n (v hw) c -> n v hw c", v=v) | |
else: | |
x = rearrange(x, "(n v) hw c -> n v hw c", v=v) | |
return x | |
class MultiViewSelfAttentionTransformer(nn.Module): | |
"""Spatial Transformer block with post init to add cross attn.""" | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
num_views, | |
depth=1, | |
dropout=0.0, | |
use_linear=True, | |
use_checkpoint=True, | |
zero_out_initialization=True, | |
full_spatial_temporal_attention=False, | |
enhance_multi_view_correspondence=False, | |
): | |
super().__init__() | |
self.num_views = num_views | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = get_group_norm_layer(in_channels) | |
if not use_linear: | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
MultiViewSelfAttentionTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
use_checkpoint=use_checkpoint, | |
full_spatial_temporal_attention=full_spatial_temporal_attention, | |
enhance_multi_view_correspondence=enhance_multi_view_correspondence, | |
) | |
for d in range(depth) | |
] | |
) | |
self.zero_out_initialization = zero_out_initialization | |
if zero_out_initialization: | |
_zero_func = zero_module | |
else: | |
def _zero_func(x): | |
return x | |
if not use_linear: | |
self.proj_out = _zero_func( | |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
) | |
else: | |
self.proj_out = _zero_func(nn.Linear(inner_dim, in_channels)) | |
self.use_linear = use_linear | |
def forward(self, x, time_steps=None): | |
# x: bt c h w | |
_, c, h, w = x.shape | |
n_views = self.num_views | |
x_in = x | |
x = self.norm(x) | |
x = rearrange(x, "(n v) c h w -> n v (h w) c", v=n_views) | |
if self.use_linear: | |
x = rearrange(x, "n v x c -> (n v) x c") | |
x = self.proj_in(x) | |
x = rearrange(x, "(n v) x c -> n v x c", v=n_views) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, time_steps=time_steps) | |
if self.use_linear: | |
x = rearrange(x, "n v x c -> (n v) x c") | |
x = self.proj_out(x) | |
x = rearrange(x, "(n v) x c -> n v x c", v=n_views) | |
x = rearrange(x, "n v (h w) c -> (n v) c h w", h=h, w=w).contiguous() | |
return x + x_in | |