import torch import torch.nn.functional as F from einops import rearrange from torch import nn from core.common import gradient_checkpoint try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False print(f"XFORMERS_IS_AVAILBLE: {XFORMERS_IS_AVAILBLE}") def get_group_norm_layer(in_channels): if in_channels < 32: if in_channels % 2 == 0: num_groups = in_channels // 2 else: num_groups = in_channels else: num_groups = 32 return torch.nn.GroupNorm( num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True ) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) if dim_out is None: dim_out = dim project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) class SpatialTemporalAttention(nn.Module): """Uses xformers to implement efficient epipolar masking for cross-attention between views.""" def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads if context_dim is None: context_dim = query_dim self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.attention_op = None def forward(self, x, context=None, enhance_multi_view_correspondence=False): q = self.to_q(x) if context is None: context = x k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) if enhance_multi_view_correspondence: with torch.no_grad(): normalized_x = torch.nn.functional.normalize(x.detach(), p=2, dim=-1) cosine_sim_map = torch.bmm(normalized_x, normalized_x.transpose(-1, -2)) attn_bias = torch.where(cosine_sim_map > 0.0, 0.0, -1e9).to( dtype=q.dtype ) attn_bias = rearrange( attn_bias.unsqueeze(1).expand(-1, self.heads, -1, -1), "b h d1 d2 -> (b h) d1 d2", ).detach() else: attn_bias = None out = xformers.ops.memory_efficient_attention( q, k, v, attn_bias=attn_bias, op=self.attention_op ) out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) del q, k, v, attn_bias return self.to_out(out) class MultiViewSelfAttentionTransformerBlock(nn.Module): def __init__( self, dim, n_heads, d_head, dropout=0.0, gated_ff=True, use_checkpoint=True, full_spatial_temporal_attention=False, enhance_multi_view_correspondence=False, ): super().__init__() attn_cls = SpatialTemporalAttention # self.self_attention_only = self_attention_only self.attn1 = attn_cls( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=None, ) # is a self-attention if not self.disable_self_attn self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) if enhance_multi_view_correspondence: # Zero initalization when MVCorr is enabled. zero_module_fn = zero_module else: def zero_module_fn(x): return x self.attn2 = zero_module_fn( attn_cls( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=None, ) ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.use_checkpoint = use_checkpoint self.full_spatial_temporal_attention = full_spatial_temporal_attention self.enhance_multi_view_correspondence = enhance_multi_view_correspondence def forward(self, x, time_steps=None): return gradient_checkpoint( self.many_stream_forward, (x, time_steps), None, flag=self.use_checkpoint ) def many_stream_forward(self, x, time_steps=None): n, v, hw = x.shape[:3] x = rearrange(x, "n v hw c -> n (v hw) c") x = ( self.attn1( self.norm1(x), context=None, enhance_multi_view_correspondence=False ) + x ) if not self.full_spatial_temporal_attention: x = rearrange(x, "n (v hw) c -> n v hw c", v=v) x = rearrange(x, "n v hw c -> (n v) hw c") x = ( self.attn2( self.norm2(x), context=None, enhance_multi_view_correspondence=self.enhance_multi_view_correspondence and hw <= 256, ) + x ) x = self.ff(self.norm3(x)) + x if self.full_spatial_temporal_attention: x = rearrange(x, "n (v hw) c -> n v hw c", v=v) else: x = rearrange(x, "(n v) hw c -> n v hw c", v=v) return x class MultiViewSelfAttentionTransformer(nn.Module): """Spatial Transformer block with post init to add cross attn.""" def __init__( self, in_channels, n_heads, d_head, num_views, depth=1, dropout=0.0, use_linear=True, use_checkpoint=True, zero_out_initialization=True, full_spatial_temporal_attention=False, enhance_multi_view_correspondence=False, ): super().__init__() self.num_views = num_views self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = get_group_norm_layer(in_channels) if not use_linear: self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) else: self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ MultiViewSelfAttentionTransformerBlock( inner_dim, n_heads, d_head, dropout=dropout, use_checkpoint=use_checkpoint, full_spatial_temporal_attention=full_spatial_temporal_attention, enhance_multi_view_correspondence=enhance_multi_view_correspondence, ) for d in range(depth) ] ) self.zero_out_initialization = zero_out_initialization if zero_out_initialization: _zero_func = zero_module else: def _zero_func(x): return x if not use_linear: self.proj_out = _zero_func( nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) ) else: self.proj_out = _zero_func(nn.Linear(inner_dim, in_channels)) self.use_linear = use_linear def forward(self, x, time_steps=None): # x: bt c h w _, c, h, w = x.shape n_views = self.num_views x_in = x x = self.norm(x) x = rearrange(x, "(n v) c h w -> n v (h w) c", v=n_views) if self.use_linear: x = rearrange(x, "n v x c -> (n v) x c") x = self.proj_in(x) x = rearrange(x, "(n v) x c -> n v x c", v=n_views) for i, block in enumerate(self.transformer_blocks): x = block(x, time_steps=time_steps) if self.use_linear: x = rearrange(x, "n v x c -> (n v) x c") x = self.proj_out(x) x = rearrange(x, "(n v) x c -> n v x c", v=n_views) x = rearrange(x, "n v (h w) c -> (n v) c h w", h=h, w=w).contiguous() return x + x_in