Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,768 Bytes
0b23d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn
from core.common import gradient_checkpoint
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
print(f"XFORMERS_IS_AVAILBLE: {XFORMERS_IS_AVAILBLE}")
def get_group_norm_layer(in_channels):
if in_channels < 32:
if in_channels % 2 == 0:
num_groups = in_channels // 2
else:
num_groups = in_channels
else:
num_groups = 32
return torch.nn.GroupNorm(
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
if dim_out is None:
dim_out = dim
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class SpatialTemporalAttention(nn.Module):
"""Uses xformers to implement efficient epipolar masking for cross-attention between views."""
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
super().__init__()
inner_dim = dim_head * heads
if context_dim is None:
context_dim = query_dim
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.attention_op = None
def forward(self, x, context=None, enhance_multi_view_correspondence=False):
q = self.to_q(x)
if context is None:
context = x
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
if enhance_multi_view_correspondence:
with torch.no_grad():
normalized_x = torch.nn.functional.normalize(x.detach(), p=2, dim=-1)
cosine_sim_map = torch.bmm(normalized_x, normalized_x.transpose(-1, -2))
attn_bias = torch.where(cosine_sim_map > 0.0, 0.0, -1e9).to(
dtype=q.dtype
)
attn_bias = rearrange(
attn_bias.unsqueeze(1).expand(-1, self.heads, -1, -1),
"b h d1 d2 -> (b h) d1 d2",
).detach()
else:
attn_bias = None
out = xformers.ops.memory_efficient_attention(
q, k, v, attn_bias=attn_bias, op=self.attention_op
)
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
del q, k, v, attn_bias
return self.to_out(out)
class MultiViewSelfAttentionTransformerBlock(nn.Module):
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
gated_ff=True,
use_checkpoint=True,
full_spatial_temporal_attention=False,
enhance_multi_view_correspondence=False,
):
super().__init__()
attn_cls = SpatialTemporalAttention
# self.self_attention_only = self_attention_only
self.attn1 = attn_cls(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=None,
) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
if enhance_multi_view_correspondence:
# Zero initalization when MVCorr is enabled.
zero_module_fn = zero_module
else:
def zero_module_fn(x):
return x
self.attn2 = zero_module_fn(
attn_cls(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=None,
)
) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.use_checkpoint = use_checkpoint
self.full_spatial_temporal_attention = full_spatial_temporal_attention
self.enhance_multi_view_correspondence = enhance_multi_view_correspondence
def forward(self, x, time_steps=None):
return gradient_checkpoint(
self.many_stream_forward, (x, time_steps), None, flag=self.use_checkpoint
)
def many_stream_forward(self, x, time_steps=None):
n, v, hw = x.shape[:3]
x = rearrange(x, "n v hw c -> n (v hw) c")
x = (
self.attn1(
self.norm1(x), context=None, enhance_multi_view_correspondence=False
)
+ x
)
if not self.full_spatial_temporal_attention:
x = rearrange(x, "n (v hw) c -> n v hw c", v=v)
x = rearrange(x, "n v hw c -> (n v) hw c")
x = (
self.attn2(
self.norm2(x),
context=None,
enhance_multi_view_correspondence=self.enhance_multi_view_correspondence
and hw <= 256,
)
+ x
)
x = self.ff(self.norm3(x)) + x
if self.full_spatial_temporal_attention:
x = rearrange(x, "n (v hw) c -> n v hw c", v=v)
else:
x = rearrange(x, "(n v) hw c -> n v hw c", v=v)
return x
class MultiViewSelfAttentionTransformer(nn.Module):
"""Spatial Transformer block with post init to add cross attn."""
def __init__(
self,
in_channels,
n_heads,
d_head,
num_views,
depth=1,
dropout=0.0,
use_linear=True,
use_checkpoint=True,
zero_out_initialization=True,
full_spatial_temporal_attention=False,
enhance_multi_view_correspondence=False,
):
super().__init__()
self.num_views = num_views
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = get_group_norm_layer(in_channels)
if not use_linear:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
MultiViewSelfAttentionTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
use_checkpoint=use_checkpoint,
full_spatial_temporal_attention=full_spatial_temporal_attention,
enhance_multi_view_correspondence=enhance_multi_view_correspondence,
)
for d in range(depth)
]
)
self.zero_out_initialization = zero_out_initialization
if zero_out_initialization:
_zero_func = zero_module
else:
def _zero_func(x):
return x
if not use_linear:
self.proj_out = _zero_func(
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
else:
self.proj_out = _zero_func(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, time_steps=None):
# x: bt c h w
_, c, h, w = x.shape
n_views = self.num_views
x_in = x
x = self.norm(x)
x = rearrange(x, "(n v) c h w -> n v (h w) c", v=n_views)
if self.use_linear:
x = rearrange(x, "n v x c -> (n v) x c")
x = self.proj_in(x)
x = rearrange(x, "(n v) x c -> n v x c", v=n_views)
for i, block in enumerate(self.transformer_blocks):
x = block(x, time_steps=time_steps)
if self.use_linear:
x = rearrange(x, "n v x c -> (n v) x c")
x = self.proj_out(x)
x = rearrange(x, "(n v) x c -> n v x c", v=n_views)
x = rearrange(x, "n v (h w) c -> (n v) c h w", h=h, w=w).contiguous()
return x + x_in
|