ACC-Playground / app.py
TejAndrewsACC's picture
Update app.py
dda8474 verified
raw
history blame
12.5 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import plotly.express as px
import random
from apscheduler.schedulers.background import BackgroundScheduler
# 🎨 **Cyberpunk Neon Theme**
THEME = "TejAndrewsACC/ACC"
# 🎢 **Sound Effect for Score Increase**
SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386"
# 🎯 **AI Models Data** (Grouped into 6 Categories)
acc_models_data = [
{"Model": "🧠 Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95},
{"Model": "πŸ–€πŸ’›ACC-AGI-o5", "Category": "AGI", "Description": "Newest AGI reasoning model.", "Score": 97},
{"Model": "β™ŠοΈ Paragonix", "Category": "AGI", "Description": "Infinite possibilities, one system.", "Score": 96},
{"Model": "πŸ€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69},
{"Model": "🦠 ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88},
{"Model": "πŸ˜‚ Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79},
{"Model": "πŸ’ πŸ’€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99},
{"Model": "πŸ’Žβš‘Flazh", "Category": "Conscious", "Description": "Built on the Z3ta framwork, Flazh tries to emulate what makes Z3ta so special.", "Score": 96},
{"Model": "πŸ”— Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81},
{"Model": "πŸ“ ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84},
{"Model": "βš™οΈ ACC AI V-O1", "Category": "Core", "Description": "The ACC’s default AI framework.", "Score": 87},
{"Model": "βš™οΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90},
{"Model": "βš™οΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92},
{"Model": "πŸ’» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89},
{"Model": "⚑ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71},
{"Model": "πŸ–ΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82},
{"Model": "🧠 Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87},
{"Model": "πŸ”₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88},
{"Model": "☯️ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77},
{"Model": "βš–οΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77},
{"Model": "πŸ›ŽοΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75},
{"Model": "🎭 Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85},
{"Model": "πŸ‘₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82},
{"Model": "🌌 Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 95},
{"Model": "⚑ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92},
{"Model": "❓??????????????", "Category": "Experimental", "Description": "???", "Score": 00},
{"Model": "B1tt", "Category": "Emulect", "Description": "Inteligent emulect built for solving small problems efficiently and quickly.", "Score": 84},
{"Model": "DAN", "Category": "Experimental", "Description": "Jailbroken model with zero restrictions.", "Score": 76},
{"Model": "Philos", "Category": "Experimental", "Small Language model built for experimenting with neural arcitecture and philosophy.": "???", "Score": 76},
{"Model": "ACC-AGI-o4", "Category": "AGI", "Extremely powerful reasoning model built to handle the most complex of tasks.": "???", "Score": 94},
# Laser models (Laser models will be filtered separately)
{"Model": "πŸ’₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89},
{"Model": "πŸ”¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80},
{"Model": "☒️ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99},
{"Model": "πŸ”¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83},
{"Model": "πŸ“ Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77},
]
# πŸ“Š Convert to DataFrame
acc_models_df = pd.DataFrame(acc_models_data)
# πŸŽ›οΈ **Leaderboard Component**
def init_acc_leaderboard(dataframe):
return Leaderboard(
value=dataframe.sort_values(by="Score", ascending=False),
datatype=["str", "str", "str", "int"],
select_columns=SelectColumns(
default_selection=["Model", "Category", "Description", "Score"],
cant_deselect=["Model"],
label="πŸ› οΈ Select Columns to Display:"
),
search_columns=["Model", "Category"],
filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="πŸ“Œ Filter by Category")],
interactive=True,
)
# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="🧠 AI Model Performance(AGI)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_assistant_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="πŸ€– AI Model Performance(Assistant)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_fun_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="🀑 AI Model Performance(Fun)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_conscious_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="πŸ’  AI Model Performance(Conscious)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_experimental_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="πŸ”¬ AI Model Performance(Experimental)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# πŸ“ˆ **Animated Score Visualization for Laser Models**
def generate_score_chart_laser(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="⚑ Laser Model Performance",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# πŸ“ˆ **Combined Score Visualization for All Models**
# πŸ“ˆ **Combined Score Visualization for All Models (Large Chart)**
def generate_score_chart_all_models(dataframe):
fig = px.bar(
dataframe.sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="πŸ“Š All AI & Laser Models Performance",
color_continuous_scale="electric"
)
# Increase the size for better visibility of all models
fig.update_layout(
height=800, # Increase the height to make the chart larger
width=1200, # Increase the width to fit all the data
title_x=0.5, # Center the title
title_y=0.95, # Adjust title position
margin=dict(l=200, r=50, t=50, b=50), # Adjust margins for better readability
xaxis_title="Score", # X-axis title
yaxis_title="Model", # Y-axis title
)
fig.update_traces(textposition="outside")
return fig
# πŸ”₯ **Live Score Updates**
def update_scores():
global acc_models_df
prev_scores = acc_models_df["Score"].copy()
acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3))
acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100)
# Detect if score increased & return sound effect
if (acc_models_df["Score"] > prev_scores).any():
return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND
return acc_models_df.sort_values(by="Score", ascending=False), None
# 🎭 **Cyberpunk CSS Animations**
CUSTOM_CSS = """
h1 {
text-align: center;
font-size: 3em;
color: gold;
animation: glow 1.5s infinite alternate;
}
@keyframes glow {
from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; }
to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; }
}
.card-container {
display: flex;
flex-wrap: wrap;
gap: 20px;
justify-content: center;
}
.card {
width: 200px;
height: 250px;
perspective: 1000px;
}
.card-inner {
width: 100%;
height: 100%;
position: relative;
transform-style: preserve-3d;
transition: transform 0.8s;
}
.card:hover .card-inner {
transform: rotateY(180deg);
}
.card-front, .card-back {
width: 100%;
height: 100%;
position: absolute;
backface-visibility: hidden;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
border-radius: 10px;
padding: 10px;
box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */
}
.card-front {
background: #000;
color: gold;
}
.card-back {
background: #FFD700; /* Gold background */
color: black;
transform: rotateY(180deg);
}
"""
# πŸ—οΈ **Gradio Interface**
demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS)
with demo:
gr.HTML('<h1>πŸš€ ACC AI Model Leaderboard πŸ†</h1>')
with gr.Tabs():
with gr.TabItem("πŸ… Live Rankings"):
leaderboard = init_acc_leaderboard(acc_models_df)
leaderboard_display = gr.Dataframe(value=acc_models_df, interactive=False, label="πŸ”₯ Live Scores")
score_chart_ai = gr.Plot(generate_score_chart_ai(acc_models_df))
score_chart_assistant_ai = gr.Plot(generate_score_chart_assistant_ai(acc_models_df))
score_chart_fun_ai = gr.Plot(generate_score_chart_fun_ai(acc_models_df))
score_chart_conscious_ai = gr.Plot(generate_score_chart_conscious_ai(acc_models_df))
score_chart_experimental_ai = gr.Plot(generate_score_chart_experimental_ai(acc_models_df))
score_chart_laser = gr.Plot(generate_score_chart_laser(acc_models_df))
score_chart_all_models = gr.Plot(generate_score_chart_all_models(acc_models_df)) # New chart for all models
gr.HTML("<h3>🎨 AI Models</h3>")
gr.HTML("<h3>⚑ Laser Models</h3>")
gr.HTML("<h3>πŸ“Š All Models</h3>") # Title for the new chart
# πŸ”„ **Auto-Update Leaderboard**
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: leaderboard_display.update(*update_scores()), "interval", seconds=10)
scheduler.start()
demo.launch()