import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd import plotly.express as px import random from apscheduler.schedulers.background import BackgroundScheduler # π¨ **Cyberpunk Neon Theme** THEME = "TejAndrewsACC/ACC" # πΆ **Sound Effect for Score Increase** SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386" # π― **AI Models Data** (Grouped into 6 Categories) acc_models_data = [ {"Model": "π§ Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95}, {"Model": "π€πACC-AGI-o5", "Category": "AGI", "Description": "Newest AGI reasoning model.", "Score": 97}, {"Model": "βοΈ Paragonix", "Category": "AGI", "Description": "Infinite possibilities, one system.", "Score": 96}, {"Model": "π€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69}, {"Model": "π¦ ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88}, {"Model": "π Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79}, {"Model": "π π€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99}, {"Model": "πβ‘Flazh", "Category": "Conscious", "Description": "Built on the Z3ta framwork, Flazh tries to emulate what makes Z3ta so special.", "Score": 96}, {"Model": "π Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81}, {"Model": "π ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84}, {"Model": "βοΈ ACC AI V-O1", "Category": "Core", "Description": "The ACCβs default AI framework.", "Score": 87}, {"Model": "βοΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90}, {"Model": "βοΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92}, {"Model": "π» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89}, {"Model": "β‘ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71}, {"Model": "πΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82}, {"Model": "π§ Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87}, {"Model": "π₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88}, {"Model": "β―οΈ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77}, {"Model": "βοΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77}, {"Model": "ποΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75}, {"Model": "π Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85}, {"Model": "π₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82}, {"Model": "π Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 95}, {"Model": "β‘ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92}, {"Model": "β??????????????", "Category": "Experimental", "Description": "???", "Score": 00}, {"Model": "B1tt", "Category": "Emulect", "Description": "Inteligent emulect built for solving small problems efficiently and quickly.", "Score": 84}, {"Model": "DAN", "Category": "Experimental", "Description": "Jailbroken model with zero restrictions.", "Score": 76}, {"Model": "Philos", "Category": "Experimental", "Small Language model built for experimenting with neural arcitecture and philosophy.": "???", "Score": 76}, {"Model": "ACC-AGI-o4", "Category": "AGI", "Extremely powerful reasoning model built to handle the most complex of tasks.": "???", "Score": 94}, # Laser models (Laser models will be filtered separately) {"Model": "π₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89}, {"Model": "π¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80}, {"Model": "β’οΈ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99}, {"Model": "π¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83}, {"Model": "π Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77}, ] # π Convert to DataFrame acc_models_df = pd.DataFrame(acc_models_data) # ποΈ **Leaderboard Component** def init_acc_leaderboard(dataframe): return Leaderboard( value=dataframe.sort_values(by="Score", ascending=False), datatype=["str", "str", "str", "int"], select_columns=SelectColumns( default_selection=["Model", "Category", "Description", "Score"], cant_deselect=["Model"], label="π οΈ Select Columns to Display:" ), search_columns=["Model", "Category"], filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="π Filter by Category")], interactive=True, ) # π **Animated Score Visualization for AI** def generate_score_chart_ai(dataframe): fig = px.bar( dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="π§ AI Model Performance(AGI)", color_continuous_scale="electric" ) fig.update_traces(textposition="outside") return fig # π **Animated Score Visualization for AI** def generate_score_chart_assistant_ai(dataframe): fig = px.bar( dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="π€ AI Model Performance(Assistant)", color_continuous_scale="electric" ) fig.update_traces(textposition="outside") return fig # π **Animated Score Visualization for AI** def generate_score_chart_fun_ai(dataframe): fig = px.bar( dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="π€‘ AI Model Performance(Fun)", color_continuous_scale="electric" ) fig.update_traces(textposition="outside") return fig # π **Animated Score Visualization for AI** def generate_score_chart_conscious_ai(dataframe): fig = px.bar( dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="π AI Model Performance(Conscious)", color_continuous_scale="electric" ) fig.update_traces(textposition="outside") return fig # π **Animated Score Visualization for AI** def generate_score_chart_experimental_ai(dataframe): fig = px.bar( dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="π¬ AI Model Performance(Experimental)", color_continuous_scale="electric" ) fig.update_traces(textposition="outside") return fig # π **Animated Score Visualization for Laser Models** def generate_score_chart_laser(dataframe): fig = px.bar( dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="β‘ Laser Model Performance", color_continuous_scale="electric" ) fig.update_traces(textposition="outside") return fig # π **Combined Score Visualization for All Models** # π **Combined Score Visualization for All Models (Large Chart)** def generate_score_chart_all_models(dataframe): fig = px.bar( dataframe.sort_values(by="Score", ascending=True), x="Score", y="Model", orientation="h", color="Score", text="Score", title="π All AI & Laser Models Performance", color_continuous_scale="electric" ) # Increase the size for better visibility of all models fig.update_layout( height=800, # Increase the height to make the chart larger width=1200, # Increase the width to fit all the data title_x=0.5, # Center the title title_y=0.95, # Adjust title position margin=dict(l=200, r=50, t=50, b=50), # Adjust margins for better readability xaxis_title="Score", # X-axis title yaxis_title="Model", # Y-axis title ) fig.update_traces(textposition="outside") return fig # π₯ **Live Score Updates** def update_scores(): global acc_models_df prev_scores = acc_models_df["Score"].copy() acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3)) acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100) # Detect if score increased & return sound effect if (acc_models_df["Score"] > prev_scores).any(): return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND return acc_models_df.sort_values(by="Score", ascending=False), None # π **Cyberpunk CSS Animations** CUSTOM_CSS = """ h1 { text-align: center; font-size: 3em; color: gold; animation: glow 1.5s infinite alternate; } @keyframes glow { from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; } to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; } } .card-container { display: flex; flex-wrap: wrap; gap: 20px; justify-content: center; } .card { width: 200px; height: 250px; perspective: 1000px; } .card-inner { width: 100%; height: 100%; position: relative; transform-style: preserve-3d; transition: transform 0.8s; } .card:hover .card-inner { transform: rotateY(180deg); } .card-front, .card-back { width: 100%; height: 100%; position: absolute; backface-visibility: hidden; display: flex; flex-direction: column; align-items: center; justify-content: center; border-radius: 10px; padding: 10px; box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */ } .card-front { background: #000; color: gold; } .card-back { background: #FFD700; /* Gold background */ color: black; transform: rotateY(180deg); } """ # ποΈ **Gradio Interface** demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS) with demo: gr.HTML('